Back to search

MSCA-Marie Sklodowska-Curie Actions (MSCA)

DeConstruct Stars: revealing the enigmatic mixing process in the radiative-convective boundary of stars using cutting-edge 3D numerical simulations

Awarded: NOK 2.6 mill.

Source:

Project Manager:

Project Number:

101150921

Project Period:

2025 - 2027

Location:

DeConstruct Stars: revealing the enigmatic mixing process in the radiative-convective boundary of stars using cutting-edge 3D numerical simulations

Stars like our Sun are complex systems in which hydrogen fusion occurs in the radiative core, and heat is transported by convection in the outer part. The two most important regions in Sun-like stars are the optical surface and the transition region between the radiative core and the convective envelop, called the tachocline. The tachocline, which is believed to be responsible for generating stellar global magnetic fields (also related to the 11-year solar cycle), is a complicated region where the effect of rotation, magnetic field, diffusion of elements, and convective overshoot interplays. In this project, we will carry out global convection simulations that range from radiative interior to the lower atmosphere for the Sun and a few F-type stars using the state-of-the-art DISPATCH code. Our ab initio simulations will include complex physical processes such as rotation and magnetic fields and are free from approximations typically adopted in previous works. Based on these simulations, the applicant will quantitively study the problem of overshooting and gravity wave excitation near the tachocline, which are crucial for a better understanding of the solar modeling problem, the anomalous abundance of lithium in the Sun, and the cosmological lithium problem.

Funding scheme:

MSCA-Marie Sklodowska-Curie Actions (MSCA)

Funding Sources