Back to search

BIA-Brukerstyrt innovasjonsarena

Økt verdiskaping gjennom etablering av verdikjede for fremtaking av formverktøy med additiv teknologi.

Alternative title: National value chain for making high productivity additive manufactured injection mold tool inserts

Awarded: NOK 5.9 mill.

Project Number:

281967

Project Period:

2018 - 2021

Funding received from:

Location:

Injection molding is a production method used to manufacture high-quality plastic components, such as brake pipe couplings for trucks (Kongsberg Automotive), protective covers for fiberglass gas tanks (Hexagon Ragasco) and electrical products (HV Plast). Injection molded products are something we all in one way or another come into contact within everyday life. Injection molding is used for products that are to be made in large quantities, and the mold tool used is expensive and complicated. Traditionally, the mold tool is machined from solid goods, were cooling channels are drilled crosswise with sealing plugs to create a continuous channel for the cooling water. The cooling ensures that the liquid plastic hardens before the mold is opened and the part is removed. The mold wall must have the correct temperature (for a given type of plastic) and as even a temperature as possible (to prevent the plastic part from twisting or getting internal stresses). When additive manufacturing is used as a production method for mold tools, cooling ducts can be built in a more favorable way, so that the product quality may be better, and the production rate can be increased. The mold must also be ventilated so that the air escapes when the plastic melt is injected. Here, too, additive manufacturing offers a lot of possibilities; Specially designed air gaps can be dimensioned and placed quite freely where they are needed. With better and correctly positioned ventilation, improvements in the product quality and extension of the mold tool life can be achieved. Furthermore, the pressure will be lower, so that so-called burning is avoided. In some cases, this can also reduce the injection time. The project has focused on improving injection molding tools by building certain mold inserts additively. Central were the following five focus points: 1. Simulation of the casting process for optimizing cooling duct design Optimization of cooling ducts is difficult, especially when the geometric freedom is large as in additive manufacturing. Therefore, numerical simulations of the casting process including the molding tool, i.e. flow (of the plastic melt in the tool and water in the cooling ducts) and heat transfer (from plastic to cooling water via the mold tool). Simulation is an important tool for optimizing the design of the cooling ducts. Simulation results and simulation methodology from the project have contributed to a knowledge database for the construction of additive tools. Known problems can thus be avoided without using simulation when constructing new tools. 2. New cooling ducts with better performance, made in a cost-effective way The project has developed two attractive cooling concepts which have been named split cooling and lamella cooling. Simulation shows that these concepts provide good and even cooling, and low pressure drop for the cooling water. 3. Improvement of additively built air gaps in the tool The project has carried out a systematic study of various air gap designs and associated additive building parameters to optimize the ventilation, as well as the service life of the air gaps. 3D microscopy has been an important tool in these studies. Early designs showed penetration of plastic into the ventilation holes, but newer designs (with very fine hole matrices in the mold tool surface) seem to work well. This study has not been completed, but the results are very promising. 4. Repair of tools with additive manufacturing The project has demonstrated that tools can be repaired by means of additive manufacturing. This is done by rebuilding worn details / areas. In this way, worn tools can be reused, which leads to cost reduction. This is now used on several tools and is also used for errors in machining and in adapting new tools. 5. Multi-material tools for optimal thermal conductivity and wear resistance The project has studied combinations of aluminum-bronze and H13 steel. The joining between these materials in additive processes has shown that it is entirely possible to create complex multi-material tools. Aluminum-bronze conducts heat very well, while H13 is a popular tool steel for injection molding. Additive Manufacturing of solid parts is time-consuming and cost-intensive, and the possibility of removing goods in molds has therefore been considered in order to minimize production costs. It has been concluded that hybrid solutions are best for larger tools. It will ultimately be a relationship between cost and utility. The project has simulated several possible solutions for hybrid casting tools. By building a knowledge base of the companies involved, the injection molds have begun to demand better tools made possible by additive technology, the toolmaker has begun to use advanced additive technology in their tools, and the provider of additive production gets more assignments. Thus, everyone in the value chain benefits from sitting on the knowledge the project has created.

Prosjektet har jobbet med å forbedre dagens teknologi innen sprøytestøpeverktøy ved bruk av additiv tilvirkning. Verktøyteknologien er avgjørende for norsk konkurransekraft, i en internasjonal bransje. Hvor små forbedringer i verktøyet utgjør store tall på bunnlinjen. Prosjektet har greid å knytte sammen denne verdikjeden i Norge, bestående av sprøytestøpere, verktøymaker og additive tilvirkere. Ved å bygge en kunnskapsbase hos de involverte bedriftene, har sprøytestøperne begynt å etterspørre bedre verktøy muliggjort av additiv teknologi, verktøymakeren har begynt å ta i bruk avansert additiv teknologi i sine verktøy, og tilbyderen av additiv produksjon får flere oppdrag. Dermed tjener alle i verdikjeden på å sitte på den kunnskapen prosjektet har skapt.

Prosjektets overordnede idé er å utvikle en kommersiell verdikjede som skal tilby norske sprøytestøpere formverktøy framstilt med additiv teknologi, og denne verdikjeden skal være en drivende kraft for utvikling av nye innovative additive løsninger til sprøytestøpebransjen. Norske sprøytestøpere er avhengig av høy produktivitet for å kunne konkurrere i et globalt marked. Implementering av ny og effektiv produksjonsteknologi samt automatisering er viktige produktivitetsfremmende tiltak. Det er imidlertid krevende å skaffe slike verktøy tilveie, da norske verktøymakerbedrifter ikke har additivt produksjonsutstyr, og liten erfaring i å konstruere slike verktøy. Verktøyene kjøpes derfor i dag fra utlandet. Anskaffelse av høyteknologiske verktøy i utlandt bryter med langvarige utviklede samarbeidsbånd mellom norske sprøytestøpere og verktøymakere, et samarbeid som har vist seg svært fruktbart. Det eksisterer derfor et ønske om at additiv teknologi kan utvikles i gjennom etablerte leveransekjeder. I Norge finnes det kompetente aktører innen konstruksjon/design og produksjon med additiv teknologi, men resursene er spredd i ulike virksomheter. Fremtaking av formverktøy med additiv teknologi i Norge, kan best skje gjennom en tett integrert verdikjede bestående av: bedrifter innen additiv produksjon, verktøymakerbedrifter og sluttbrukere. Det har også tilkommet flere additivprodusenter i Norge i det siste, bed en teknologi som kan revolusjonerer verktøyfremstilling, og sokm i verdikjeden vil bidra med spissteknologi. To store teknologiske nyvinninger innen sprøytestøpeverktøy er formtilpasset kjøling og ventilering av gass fra formrommet, begge realisert gjennom bruk av additiv teknologi. Dette bidrar til økt produktivitet, forbedret produktkvalitet, forbedret overflatebeskaffenhet, økt verktøylevetid og reduksjon av vrakproduksjon. Den mest fremtredende forskningsutfordring er knyttet til metoder for optimalisering av verktøydesign ved bruk av simulering.

Funding scheme:

BIA-Brukerstyrt innovasjonsarena