Back to search

ENERGIX-Stort program energi

Hurtigladbare Anoder av Silisium for Transport

Alternative title: High rate Anodes of Silicon for Transportation

Awarded: NOK 22.3 mill.

Project Manager:

Project Number:

309621

Project Period:

2020 - 2022

Funding received from:

Organisation:

HAST Popular science presentation The HAST project aimed at developing new anode materials for Li-ion batteries, to replace the graphite used today. Caompared with graphite, silicon can give a weight reduction of almost a factor 10 in the anode, 20-30% in the entire battery. Our main task is to protect the silicon, so it survives long term cycling. To move lithium quickly into and out of particles, they have to be small. At the same time, we wish to reduce surface areas that drive the degradation. The solution is to make many small particles (<100nm) and wrap them into agglomerates (>1µm). Cenate has developed proprietary technology to make silicon particles from silane gas. Because the particles are made bottom-up, rather than milling large chunks, we have an advantage when very small particles are desired. During the project, we have developed two new generations of reactors, in order to satisfy customer demands for ever smaller particles. To make agglomerates, we have evaluated many, and finally selected two, methods. We have built and/or purchased equipment to test the methods, and have evaluated a large number of different precursor materials as starting points. In all this work we have been dependent on advanced characterization to judge our success. We have used XPS and TEM at SINTEF to study coatings, FIB-SEM to investigate the porosity of our particles, and finally tested the materials in electrodes at IFE. Through the project period, Cenate has hired 6 new scientific staff. We have become a more multicultural team, and three of our new employees are females. We have a new laboratory at the Oslo Science Park, as well as a new pilot production plant with it?s own chemistry lab at Holtskogen, near Askim. During the project, we grew out of the IFE silane, establishing our own silane infrastructure. This has cost a lot of effort, but also given savings. We can have more frequent experiments, easier access for cleaning and maintenance, and faster decisions in a more transparent environment, allowing efficient safety procedures. COVID has delayed us, but less than we feared. It was a struggle to get a newly hired employee to the country, delaying also other hirings, but have mainly been able to keep up the pace in experiments and equipment and lab development. Teams meetings have allowed close collaboration even with external partners, even though travels and conference participation has been limited. During HAST, Cenate has filed three patent applications, which have all received positive feedback regarding novelty and innovation level. One of the applications is newly published, and describes how we can increase the crystallization temperature of the amorphous silicon by including a small amount (<5%at) of carbon. Amorphous particles are less destructive on their surroundings in the first lithiation, allowing lifetime increases in some systems. Also, the first lithiation is easier, allowing the first charging cycle in the factory to be performed faster than for crystalline silicon, a great advantage for the battery producer. Given the COVID limitations, Cenate has held a relatively high profile, in the media, but in particular directed towards potential customers and investors. In the agglomeration work, we now have scalable processes based on two different principles, to reduce risk. We achieve the desired size distributions, and a good balance between cyclability and capacity. A large effort has been invested into making the powders safe for handling, transport and storage. A review of the HAST objectives, shows that most of them have been achieved, even though our main target is still not secured - that of landing a sale justifying the construction of a factory. We have performed all experimental milestones, even if some were delayed, but our modelling work has not started properly yet. Even though we have not had formal acceptance of a product yet, we are in close dialogue and in some situations very extensive collaboration, with two major Asian and two European battery producers, with specific and realistic targets. One of the leading global battery manufacturers is therefore visiting Askim in May, in order to judge the upscaling risk towards full mass production. The support from the Research Council of Norway, and the flexibility whenever we have had to change our plans, has been instrumental in achieving the results. We thank for a very good collaboration, and hope to repay the support in the form of taxable income within not too many years.

Resultatene fra HAST har gitt svært viktige bidrag til å øke sannsynligheten for at Cenates materialer kan erstatte grafitt i elbilbatterier og dermed bidra til at elbilene globalt blir både billigere og får lengre rekkevidde. HAST har lykkes med å etablere Cenate som en sentral samarbeidspartner for noen av verdens ledende batteriprodusenter. Vi har utviklet nye, patentsøkte, materialer som er etterspurt som byggestener i utviklingsavdelingene til flere store aktører, både asiatiske og europeiske. Resultatene fra HAST har også utløst tilstrekkelig privat og offentlig kapital til at Cenate sammen med Dynatec har kunnet bygge et pilotanlegg for demonstrasjon av storskala produksjon av primærpartikler. SINTEF og IFE har fått erfaringer med nye materialtyper og karakteriseringsutfordringer som vil styrke dem i senere prosjekter. Dynatec har videreutviklet sine reaktorer, og er i praksis sikret store leveranser hvis/når Cenate beslutter å bygge fabrikk.

HAST beskriver både bilistens ønske om hurtig lading av nok strøm, verdens behov for raske løsninger for nullutslipp i transport, og hvordan Norge må skynde seg om vi skal ta del i verdikjedene i fremtidens enorme marked for Li-ion-batterier. Et batteri består av en ende hvor litium trives - katoden - og en der det ikke trives - anoden. I dagens kommersielle batterier er det grafitt som utgjør anoden. Ved å erstatte grafitten med silisium, er det mulig å redusere batterivekten med inntil 30%. Silisium er imidlertid svært vanskelig å få til å tåle mange ladesykluser, da det både ekspanderer under lading, flytter på seg og gjør elektrolytten ustabil der den møter silisium. Løsningene for silisiumanoder i batterier bygges som en bro - ved at silisiumprodusenter bygger fra sin ende, mens batteriprodusentene bygger fra sin. Cenate har allerede utviklet verdensledende silisium nanopartikler for batteriformål. Vi har oppnådd svært høy kapasitet og har lært metoder som kan stabilisere materialene så de overlever mange sykler. Noen få batteriprodusenter har kommet så langt på sin bro-ende at vi kan møtes på midten og i fellesskap har en løsning som kan utgjøre en mindre del av dagens batterier. De fleste - og alle de europeiske - har et stykke igjen. Gjennom HAST vil Cenate pakke nanopartikler inn i flere tusen ganger større komposittpartikler. Akkurat som effektiv transport i en storby krever motorveier, småveier og parkeringsplasser prøver vi å oppnå det samme ved at elektrolytten kan bevege seg i store kanaler mellom store kompositter mens det er «småveier» for litium inne i komposittpartiklene, og der nanopartiklene utgjør parkeringsplassene for litium. Dette vil tillate høyere ladehastigheter og tykkere elektroder, og vil gjøre det enklere for fremtidige kunder å anvende materialet i eksisterende prosesslinjer. Målet er å skape unik teknologi som kan bidra til økt rekkevidde for elbilene og bygge en ny stor virksomhet basert på produksjon og salg av denne.

Funding scheme:

ENERGIX-Stort program energi