Back to search

ENERGIX-Stort program energi

Turbulent eddies to create paths for safe downstream migration for salmonids and eel past hydropower intakes

Alternative title: Bruk av turbulensvirvler for å lede laksefisk og ål trygt forbi inntak til vannkraftverk

Awarded: NOK 15.1 mill.

Fish on their downstream migration in rivers often encounter hydropower dams and intakes and tend to follow the main flow into the turbines where they may be injured or killed. While fine-meshed racks and bypass constructions can prevent fish from entering, they are costly and challenging to construct and operate in larger systems. Thus, many hydropower facilities have no or poor protection systems for downstream migration fish. There is a need to develop alternative guiding systems that are cost-effective and easier to operate. Via their sensory systems, fish can detect turbulent movements (eddies) in the water and respond by avoiding them or by exploiting the eddies for swimming. In FishPath we are using these abilities to develop turbulent eddies based guiding structures for salmon, trout and eel. As a start we have developed and successfully validated a computer model system to study the eddies created by a reference cylinder. We proceeded to model the eddies created by a hydrofoil with different appendices (mounted on the hydrofoil) to check which configurations that provides the type of eddies that may guide the fish. Next the behavior of the eddies will tested in a small flume. In 2022 we will study how fish respond to such eddies in live-fish experiments. Next, we need to align the objects that produce the desired eddies to create a fish path that the fish will follow, also explored by modelling and experiments. Once the candidate guiding systems have been developed their ability to guide fish will be tested, first in a relatively small laboratory flume, next in a large flume and finally the most promising in a full-scale prototype test in a river with a relatively large hydropower intake. Results will be compiled in a practical guideline for eddy based guiding system, where we will also explore how the knowledge on turbulence and fish can be used in mitigation of other migration challenges (e.g., upstream migration).

Fish on their downstream migration in rivers often encounter hydropower dams and intakes and tend to follow the main flow into the turbines where they may be injured or killed. While fine-meshed racks with a bypass can prevent fish from entering, they are costly and challenging to install and operate, particularly in larger systems. Thus, many hydropower sites have no or poor protection systems for downstream migration. Despite recent promising results on fish guidance racks, there is a need to develop next generation systems that are cost-effective, easier to operate and provide high guidance efficiency at low power production losses. Via their sensory systems, fish can detect turbulent circular currents (eddies) in the water, and respond to them either by avoiding or by exploiting them for swimming. In FishPath we will utilize these abilities to develop turbulent eddies based guiding system for salmon, trout and eel. To do so we first need to explore the behavior of eddies created by different objects (e.g. cylinders and hydrofoils) in the flow and how the fish species respond to different types of eddies. The behavior of the eddies will be studied by computational modelling and experiments in small flumes. The responses of fish to different eddies will be explored in a series of fish flume experiments. Next, we align the objects that produce the desired eddies to generate fish paths for the fish to follow, also explored by modelling and experiments. Once the candidate guiding systems have been developed, their efficiencies to guide fish will be investigated first in a medium laboratory flume and then in a large flume. Finally, the most promising system will be tested in the field at a relatively large hydropower intake. Results will be compiled in a practical guideline for design of eddy based guiding system, where we will also explore how the knowledge on turbulence and fish can be used in mitigation of other migration challenges (e.g. upstream migration).

Funding scheme:

ENERGIX-Stort program energi

Thematic Areas and Topics

Digitalisering og bruk av IKTPrivat sektorLTP3 Klima, miljø og energiLavutslippLTP3 Høy kvalitet og tilgjengelighetNaturmangfold og miljøMarinMarint naturmangfold, økosystemer og økosystemtjenesterFNs BærekraftsmålFNs BærekraftsmålMål 7 Ren energi for alleBransjer og næringerMiljø - NæringsområdePolitikk- og forvaltningsområderFiskeri og kystPolitikk- og forvaltningsområderBransjer og næringerNaturmangfold og miljøMarint naturmangfold, økosystemer og økosystemtjenesterBransjer og næringerFiskeri og havbrukDigitalisering og bruk av IKTLTP3 IKT og digital transformasjonLTP3 Muliggjørende og industrielle teknologierGrunnforskningLTP3 Fagmiljøer og talenterPortefølje Muliggjørende teknologierLTP3 Hav og kystPortefølje Banebrytende forskningLTP3 Styrket konkurransekraft og innovasjonsevneInternasjonaliseringInternasjonalt prosjektsamarbeidLTP3 Marine bioressurser og havforvaltningPolitikk- og forvaltningsområderMiljø, klima og naturforvaltningMarinLTP3 Et kunnskapsintensivt næringsliv i hele landetPolitikk- og forvaltningsområderEnergi - Politikk og forvaltningPortefølje Energi og transportKlimarelevant forskningNaturmangfoldKutt i utslipp av klimagasserPortefølje Klima og miljøMiljøvennlig energiEnergipolitikk, miljøkonsekvenser og bærekraftLTP3 Miljøvennlig energi og lavutslippsløsningerPortefølje ForskningssystemetInternasjonaliseringAnvendt forskningBransjer og næringerEnergi - NæringsområdeMiljøvennlig energiPortefølje InnovasjonFNs BærekraftsmålMål 14 Liv under vann