Back to search

NANO2021-Nanoteknologi og nye materiale

Scalable Sustainable Anodes for Li-ion Batteries by Structural Design (SUSTBATT)

Alternative title: Skalerbare bærekraftige anoder for Li-ion-batterier gjennom strukturelt design

Awarded: NOK 5.0 mill.

SUSTBATT main goal is to develop anodes for next-generation Lithium-ion Batteries from scalable and sustainable sources. Sustainability is at the core of SUSTBATT strategy, and therefore all processess involved on this project are of sustainable nature. The raw material for the fabrication of high-peformance anode materials is produced by diatoms microalgae, which synthesize hierarchical nanostructured SiO2 exoskeletons upon growing through biomineralization processes. The SiO2 structured build by diatoms is used as template material for the fabrication of structures with tailored oxygen content, which constitute the active material of the high performance diatom-based negtive electrodes. The anode production is then scaled-up and the structural and microstructural changes of the material upon electrochemical cycling is characterized using a multiprobe-multiscale approach.

Li-ion batteries (LIBs) can bridge renewable energy sources to power demand and are therefore crucial in achieving energy sustainability. However, the magnitude of the forthcoming market demand for LIBs along with the need for a climate neutral economy means that a sustainable supply of battery raw materials becomes strategically essential. Apart from lithium, there is one material that is a fundamental part of all LIBs: graphite, which is the primary component of LIBs anodes. Graphite exhibits a storage capacity of 372 mAhg-1, which is insufficient for next-generation LIBs. Even more concerning, it has been listed as a critical raw material. SUSTBATT aims to develop scalable high-performance anodes for LIBs from affordable, non-toxic and naturally abundant sources. These constitute an essential prerequisite for reaching true energy sustainability. Recent reports have demonstrated the feasibility of using naturally abundant nanostructured diatom frustules, the major natural source of SiO2, for fabricating LIBs anodes. A landmark of 840 mAhg-1 stable storage capacity after 100 cycles at 100 mAg-1 was achieved by using SiO2 from diatom feedstocks, and a superior landmark of 1100 mAhg-1 at 700 mAg-1 (though with poorer cycling stability) was reached using diatom-derived Si anodes. These findings provoke the need to explore diatom-derived SiOx (0=x=2) structures. The joint competence of the SUSTBATT Consortium will enable the development of scalable and sustainable SiOx anodes that can out-perform current state-of-the-art negative electrodes, paving the way for the innovative integration of natural feedstock into industrial battery production schemes.

Publications from Cristin

No publications found

No publications found

No publications found

No publications found

Funding scheme:

NANO2021-Nanoteknologi og nye materiale