Back to search

TEKNOKONVERGENS-Teknologikonvergens - grensesprengende forskning og radikal innovasjon

Enabling natural photonics through genetic manipulation of diatoms

Alternative title: Optimalisering av naturlig fotonikk gjennom genetisk manipulering av kiselalger

Awarded: NOK 15.0 mill.

Photonics, the manipulation of light at nanoscale, is a key enabling technology with potential to address a number of societal and global challenges. Photonic crystals (PhCs) are key components of photonic technologies facilitating light manipulation even in three dimensions; however, the nanofabrication procedures required are far from being environmentally friendly and cost-effective. The ENIGMA team recently demonstrated that diatoms, which are unicellular microalgae, form high-quality PhCs in their silica-based cell wall, with highly reproducible photonic properties in the visible spectral range. Thus, diatoms have potential to act as a platform for producing highly cost-effective, environmentally friendly and natural PhCs for a wide range of applications. In this project, we will combine biotechnology and nanophotonics to obtain tailored bio-PhCs for specific applications. We will sequence the silicon-responsive transcriptome of two diatom species, Coscinodiscus granii and C. wailesii, and establish genetic transformation in these species. We will use the data from Coscinodiscus and from the model diatom Thalassiosira pseudonana to identify candidate genes involved in the PhC formation process. Their function will be investigated using CRISPR/Cas9-based gene editing. The optical properties of the gene edited mutants will be characterized with microscopes adapted for the study of PhCs, yielding information of the spatial and spectral light manipulation potential, and to find a correlation between photonic response and genetic mutation. We will demonstrate the wide range of applicability of this novel technology through the implementation of two applications demanding high quality nanostructures; biosensing and photocatalytic platforms. Responsible Research and Innovation (RRI) will be employed in the project to ensure societal awareness, acceptability, and environmental sustainability.

Photonics, the manipulation of light at nanoscale, is a key enabling technology the potential to address a number of societal and global challenges. Photonic crystals (PhCs) are sophisticated components at the core of photonics, facilitating light manipulation in up to three dimensions; however, the nanofabrication procedures required are far from being environmentally friendly and cost-effective. We very recently demonstrated that diatoms, which are unicellular microalgae, form high-quality PhCs in their silica-based cell wall, with highly reproducible photonic properties confined to particular parts of the light spectrum. Thus, diatoms have potential to act as a platform for producing highly cost-effective, environmentally friendly and natural PhCs for a wide range of applications. In this project we will combine biotechnology and nanophotonics to obtain tailored bio-PhCs for specific applications. We will sequence the silicon-responsive transcriptome of two diatom species, Coscinodiscus granii and C. wailesii, and establish genetic transformation in these species. We will mine the sequence datasets from Coscinodiscus and from the model diatom Thalassiosira pseudonana for candidate genes involved in the in vivo PhC formation process. Their function will be investigated using CRISPR/Cas9-based gene editing. The optical properties of the genetic mutants will be characterized with microscopes adapted for the study of PhCs, yielding information of the spatial and spectral light manipulation potential, and to find a correlation between photonic response and genetic mutation. We will demonstrate the wide range of applicability of this novel technology through the implementation of two applications demanding high quality nanostructures; biosensing and photocatalytic platforms. The four dimensions of RRI (Anticipation, inclusion, reflexivity, and responsiveness) will be employed in the project to ensure social awareness, acceptability, and environmental sustainability.

Publications from Cristin

No publications found

No publications found

No publications found

No publications found

Funding scheme:

TEKNOKONVERGENS-Teknologikonvergens - grensesprengende forskning og radikal innovasjon

Funding Sources

Thematic Areas and Topics

LTP3 Miljøvennlig energi og lavutslippsløsningerAnvendt forskningLTP3 Klima, polar og miljøPortefølje Energi og transportLavutslippBransjer og næringerBioøkonomiSektorovergripende bioøkonomiBransjer og næringerEnergi - NæringsområdeLTP3 Et kunnskapsintensivt næringsliv i hele landetPolitikk- og forvaltningsområderEnergi - Politikk og forvaltningMarinFNs BærekraftsmålMål 9 Innovasjon og infrastrukturLTP3 Styrket konkurransekraft og innovasjonsevneInternasjonaliseringNanoteknologi/avanserte materialerNaturmangfold og miljøInternasjonaliseringInternasjonalt prosjektsamarbeidAvanserte produksjonsprosesserNanoteknologi/avanserte materialerNanovitenskap og -teknologiPortefølje Klima og miljøFNs BærekraftsmålMål 14 Liv under vannAvanserte produksjonsprosesserAvansert produksjonsteknologi som fag og teknologi (ny fra 2015)Politikk- og forvaltningsområderForskningResponsible Research & InnovationResponsible Research & InnovationRRI Utviklings- og prosessorienteringFNs BærekraftsmålPortefølje ForskningssystemetBioteknologiMarin bioteknologiSirkulær økonomiPortefølje Banebrytende forskningBioøkonomiGrunnforskningLTP3 Høy kvalitet og tilgjengelighetLTP3 Fagmiljøer og talenterBioteknologiLTP3 Klima, miljø og energiLTP3 Marine bioressurser og havforvaltningLTP3 Bioøkonomi og forvaltningLTP3 Nano-, bioteknologi og teknologikonvergensLTP3 Hav og kystLTP3 Muliggjørende og industrielle teknologierMarinMarin bioteknologiPolitikk- og forvaltningsområderPortefølje Mat og bioressurserPortefølje Muliggjørende teknologier