Tilbake til søkeresultatene

CLIMIT-Forskning, utvikling og demo av CO2-håndtering

Evolutionary de novo design of absorbents with optimal CO2 capturing properties

Tildelt: kr 9,7 mill.

Teknisk innhold Vi bruker dataassistert tilnærming for å gjøre utviklingen av nye CO2 absorbenter med forbedrede egenskaper mer effektiv. Vår metode er basert på en evolusjonær algoritme (EA) som er en global optimeringsmetode som sørger for at absorbenter med mange optimale egenskaper kan nås. Nye strukturer er automatisk satt sammen og evaluert av en eller flere fitnessfunksjoner som er direkte relaterte til observert CO2 absorpsjon eller til teoretisk beregnede egenskaper som er sterkt korrelerte med observasjoner. Sentralt for metoden er utviklingen av fitnessfunksjoner som er basert på prediktive kvantitative struktur-egenskaps relasjonsmodeller (QSPR) for å gjøre den iterative evolusjonære algoritmen beregningsmessig mulig. Merverdi av prosjektet Suksessen til den foreslåtte de novo metoden kan bli en game-changer for karbonfangst fordi den sørger for at utviklingsprosessen som produserer billigere og bedre absorbentmolekyler blir betydelig effektivisert. De økonomiske og miljømessige påvirkningene kan være signifikante. Forskningsutfordringer Det er tre hovedområder for utfordringer i prosjektet: 1) den praktiske organiske syntesen av foreslåtte strukturer fra modellering fordi organisk syntese generelt er vanskelig og tidkrevende, 2) testing av nye forbindelser for deres egenskaper som CO2 fangst og toxisitet i små volumer, og 3) matematisk modellering av relevante egenskaper og det teoretiske søket etter nye, synteserbare strukturer. Resultater så langt En serie med 40 nye imidazoler har blitt syntetisert og testet for egenskaper som CO2-absorbans, viskositet, tetthet og likevektsdata. I tillegg, flere nye syntetiske strukturer har blitt utviklet for ioniske væsker som også vil bli testet i membraner for å øke CO2 selektivitet. Det nye apparatet som er utviklet i prosjektet muliggjør eksperimentell screening og karakterisering av nye CO2 absorbenter som ennå ikke er tilgjengelige som bulk kjemikalier. Instrumentet tillater rask og automatisk screening av absorbenter på en mililiter skala. Måleresultatene er sammenliknbare med resultater man får fra større instrumenter. Den utviklede in-situ online monitoreringen av CO2-loading i løsning og gassfase konsentrasjoner i apparatet kan også være relevant for fremtidig online prosessinstrumentering i CO2 fangst anlegg. QSPR modeller for å predikere egenskaper til ioniske væsker som termisk dekomponeringstemperaturer, grad av CO2 fangst, smeltepunkt, brytningsindeks og konduktivitet har blitt utviklet. Totalt 2098 kationer og 336 anioner til nå er blitt ekstrahert fra litteraturen og brukt til å lage over 700000 teoretiske ioniske væske kombinasjoner hvor bare en liten prosentdel (ca 1%) har blitt eksperimentelt testet. På basis av dette har vi derfor satt igang konstruksjonen av en database som vil inneholde strukturene til kationene og anionene, deres predikerte egenskaper fra både maskinlæring og kvantekjemiske metoder sammen med eksperimentelle data der disse er tilgjengelige. En kombinatorisk kjemibasert tilnærming ble også etablert hvor over 200000 kationer (spenner over 7 forskjellige kjemiske grupper) og 38 anioner ble brukt til å samle nær 8 millioner ioniske væsker. Virtual screening basert på maskininnlæringsmodeller for ulike egenskaper som er tillatt for ioniske væsker som skal innstilles til de forskjellige anvendelsesområdene som celluloseoppløsning, gassopptak, elektrokjemi og biologi.

We propose to employ a recently developed de novo design software to develop new absorbents, such as amines, amino acids and ionic liquids, for carbon capture. Our software has been successfully demonstrated to work in catalyst discovery and has the poten tial to boost development of new and more efficient absorbent molecules that are also cheap and easy to synthesize. Our method is based on an evolutionary algorithm (EA), a global optimization method ensuring that absorbents with optimal properties are r eached. New structures are automatically assembled and evaluated by one or several fitness functions, which are here directly related to the observed absorption of CO2 or to theoretically computed properties highly correlated with observations. Central to the method is the development of fitness functions based on highly predictive quantitative structure-property relationship (QSPR) models to make the iterative evolutionary algorithm computationally tractable. The success of the proposed de novo method could be a game-changer for carbon capture as it enables considerable speed-up of the development process and gives cheaper and better absorbent molecules. The economic and environmental impact could be significant.

Publikasjoner hentet fra Cristin

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Aktivitet:

CLIMIT-Forskning, utvikling og demo av CO2-håndtering