Tilbake til søkeresultatene

ENERGIX-Stort program energi

Photoelectrochemical Water Splitting: A Korea - Norway Research Cooperation (PhotoKORNOR)

Tildelt: kr 26 000

Utarmingen av fossilt brensel og klimaendringer øker behovet for nye energiteknologier. Hydrogen blir betraktet å være fremtidens energibærer. En ren og fornybar produksjon av hydrogen er veien å gå. Prosessen med å splitte vann i hydrogen og oksygen, kalt fotoelektrolyse, krevet materialer som er laget av halvledere eller metalloksider. Forskere kaller disse materialene fotokatalysatorer siden de absorberer solenergi og aktiveres for å bryte vannmolekyler til hydrogen- og oksygengass. I PhotoKorNor prosjektet jobber forskere fra Norge og Sør-Korea med syntese av hematitt (jern oksid) fotokatalysatorer og forbedring av effektivitet og stabilitet ved deponering av grafen over elektrodene. Prosjektet vil hjelpe forskere i Norge med forståelse av prosessen for å produsere hematitt-baserte anoder via hydrotermiske metoder, som den koreanske partneren er anerkjent for.

The depleting fossil fuels and altering climatic conditions increases the necessity for alternative energy technologies. Hydrogen is considered to be the energy carrier of our future due to its sustainability and environment compatibility. Currently, production of hydrogen in an economical and eco-friendly way is a major hurdle in realizing hydrogen-based economy. Photoelectrochemical (PEC) water splitting is considered as one of the ultimate solutions to make the hydrogen cycle sustainable as it requires only sunlight and water to generate hydrogen. The thermodynamic voltage for water splitting under standard conditions is 1.23 V, and the photoactive materials must produce a photovoltage sufficiently high enough to drive water splitting reactions. Hematite is one of the most favorite materials for PEC water oxidation, but they suffer from poor electronic conductivity, low absorption coefficient, short hole diffusion length and high electron-hole recombination rate. This project coupled with Photongraphy aims at developing highly active and durable hematite-based photocatalysts by use of N-doped graphene. In addition to complimenting Photongraphy, we expect to gain knowledge on photoelectrochemical cell designs and state-of-the-art closed gas circulation system coupled with a gas chromatography and risks involved in this setup from the host institute, which will help the Norwegian groups to establish a similar measurement facility. Further, we expect that this cooperation would develop into a strategic partnership with the institutes in the long-term, which is one of the requirements of the bilateral projects supported by Norges forskningsråd.

Budsjettformål:

ENERGIX-Stort program energi