Tilbake til søkeresultatene

NANO2021-Nanoteknologi og nye materiale

3D-Printed High-Entropy Alloy Micro- and Nanoparticles for Magnetocaloric Energy Conversion

Alternativ tittel: 3D-Trykt High-Entropy Alloy Mikro- og Nanopartikler for Magnetokalorisk Energikonvertering

Tildelt: kr 9,8 mill.

Prosjektnummer:

287150

Søknadstype:

Prosjektperiode:

2019 - 2023

Geografi:

Prosjektet HI-ENTROPY har løpt i perioden fra 1.7.2019 til 31.12.2022. Hovedformålet har vært å utvikle et nytt forskningsområde i Norge - magnetokaloriske materialer. Mer spesifikt har forskningsfokus vært på å utvikle en ny materialklasse- såkalte "høyentropi-legeringer" og på å evaluere potensialet for magnetokalorisk energikonvertering (kjøling, luft-kondisjonering eller varmepumping) nær romtemperatur. Materialene som ble utviklet var alle basert på billige, lett tilgjengelige og ikke-kritiske grunnstoffer. De vitenskapelige resultatene som ble oppnådd i løpet av de siste 3 ½ årene har gitt en bedre forståelse av sammenhengen mellom materialstruktur og fysiske egenskaper, og har gjort det mulig å tilpasse materialer til spesifikke behov. HI-ENTROPY har også generert nye forskningsspørsmål - noen fortsatt ubesvart - som vil gi forskere innen feltet arbeid i mange år fremover. Enkelte problemstillinger, som langtids repeterbarhet og termisk hysterese, vil det være nødvendig å arbeide videre med siden disse faktorene har praktisk betydning for fremtidige anvendelser av materialene.

The scientific outcome is in the form of increased knowledge regarding high entropy alloys for magnetocaloric energy conversion applications around room temperature. We managed to develop novel materials and combinations of elements that were not investigated prior to the HI-ENTROPY project. Furthermore, we were able to establish some structure-property relationships for the MM'X-type compounds and gained insight into the driving force that triggers the magnetostructural transitions in those compounds. Furthermore, we developed candidate materials based on abundant and non-critical elements which could potentially find their way into future energy conversion devices.

Magnetocaloric energy conversion represents an alternative to compressor-based refrigerators, heat pumps and power generation with low enthalpy heat sources. This green technology offers an opportunity to use environmentally friendly solid refrigerants, and the potentially high energy efficiency follows the trends of future energy conversion devices. Currently employed magnetocaloric materials tend to exhibit a large magnetocaloric effect (MCE). However, they can suffer from cracking and fatigue, which severely limits their useful lifetime. The high entropy alloys (HEAs) are a class of emergent transition metal alloys that hold great potential for advanced manufacturing, and which may impact magnetocalorics. They offer supply chain and cost stability, and superior mechanical properties such as ductility, corrosion resistance, machinability, all of which ease manufacturing and bolster product longevity. HEAs have only very recently been considered for magnetocaloric applications, and are still a widely unexplored class of materials. In this project, we will study the influence of nanostructuring and chemical composition on atomic disorder, corrosion resistance, mechanical durability and thermo-magnetic properties of selected HEAs. Finally, we will create artificial structures from 3D-printed HEA micro- and nanoparticles and compare their thermo-magnetic performance to that of the neat powdered materials. A potential future application of this research lies in the area of magnetocaloric energy conversion: magnetic cooling, magnetic heat pumping and magnetic power generation. HI-ENTROPY is an interdisciplinary project that will address the key areas of materials design, synthesis, additive manufacturing, and device modelling concurrently. This interplay will facilitate the compromises necessary to reach the best combination of components and will allow implementing magnetocaloric heating and cooling as part of an efficient and environment-friendly energy system.

Publikasjoner hentet fra Cristin

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Budsjettformål:

NANO2021-Nanoteknologi og nye materiale