Tilbake til søkeresultatene

NANO2021-Nanoteknologi og nye materiale

Dynamic integration of proton conducting systems in an intermittent energy landscape

Alternativ tittel: Dynamisk integrasjon av proton ledende systemer i et periodisk energilandskap

Tildelt: kr 6,5 mill.

Prosjektnummer:

296548

Prosjektperiode:

2019 - 2023

Geografi:

Samarbeidsland:

DYNAPRO har fokusert på å oppnå høyere virkningsgrad og produksjon av hydrogen i keramiske membranreaktorer under dynamiske og kostnadseffektive betingelser. Kjerneteknologien benytter høytemperatur protonledene keramiske elektrokjemiske celler som separerer hydrogen fra hydrogenholdige blandinger. Prosjektet har jobbet med hydrokarboner (metan), ammoniakk og vann som hydrogenbærere. Hydrogenet separeres elektrokjemisk i cellen, slik at termodynamiske likevekter kan omgås. Når metan benyttes som hydrogenbærer fører dette også til en opp-konsentrasjon av CO2 klar til lagring. Ved elektrokjemisk separasjon genereres det varme, når denne varmen kobles med endoterme reaksjoner så kan man samtidig oppnå en høy virkningsgrad. Dette har blitt analysert i prosjektet ved hjelp av en databasert modell basert på blant annet fluid dynamikk. Enkeltkomponenter i cellene er evaluert eksperimentelt, som har ført til økt forståelse, og utvikling av forbedrede versjoner. Dette gjelder spesielt elektrodene, hvor vi observerte at mikrostrukturen og sammensetningen var kritisk å optimere for å få lav motstand spesielt ved høy hydrogenutnyttelse. Prosjektpartnere har vært CoorsTek Membrane Sciences (prosjekteier), Universitetet i Oslo (forskerstilling og PhD student) samt CSIC-ITQ i Spania (veiledning og tilgang til avanserte måleinstrumenter).

The DYNAPRO project, with project partners University of Oslo and CSIC-ITQ, Spain and project leader CoorsTek Membrane Sciences, has led to increased understanding of the operational principles of proton conducting technologies for hydrogen generation. Specifically the project has contributed to scaling the technology to stacked systems and identification of optimal operating conditions with respect to energy use and efficiency, addressing potential utilization in a dynamic energy landscape. The results have contributed to a publication in Science magazine in 2022. The overall work has increased the technology readiness level of the proton conducting technologies, enabling pre-commercial demonstrations being next steps in the development. At UiO one PhD candidate has been educated with supervision from both CoorsTek Membrane Sciences and CSIC-ITQ in Spain.

Renewables are diffusing rapidly into electrical grids, thereby generating major changes for existing technologies, organizations and infrastructures. Renewable energies are intermittent (e.g. solar, wind) with electricity generation cycles that do not follow the demand cycles, energy storage solutions are therefore needed. High temperature proton conductors are currently being used in applications such as the protonic membrane reformer (PMR) where compressed hydrogen is produced directly from steam methane reforming, and in steam electrolysis (PCEC). Both the PMR and PCEC technology has reached a sufficient maturity level to attract industrial interest. To ensure that these technologies can be the choice as a future energy-conversion technology we will in the present project apply the concept of using proton-conducting systems as flexible operating energy-converters. The present project gathers world-leading industry (CoorsTek) and academic institutions (UiO ELCHEM) and (CSIC-ITQ, Spain) to study the effects of cycling operating, especially with respect to thermal management and degradation of the nanostructure of the ceramic proton conducting membranes under intermittent conditions, resembling the periods where a surplus of renewable energy is available. The project will create a computational model of both the PMR and PCEC reactor from which e.g. thermal profiles will be extracted. Results from modelling will be fed to an experimental matrix. A high throughput experimental approach will be to used, which will enable to screen a large range of conditions to sufficiently understand both PMR and PCEC performance and facilitate materials improvements. The project runs for 3 years, trains 1 PhD and 1 research fellow at the University of Oslo, fosters international collaboration with CSIC-ITQ in Spain, aims to establish new intellectual properties in various fields and will disseminate the results of the project in high impact journals and international conferences.

Budsjettformål:

NANO2021-Nanoteknologi og nye materiale