Kampen mot klimaendringer og for en bærekraftig håndtering av avfall er anerkjent som store samfunnsutfordringer i Parisavtalen og EUs handlingsplan for en sirkulær økonomi. Bruken av karbonfangst, utnyttelse og lagrings-teknologier (CCUS - Carbon Capture Utilization and Storage) i avfallforbrenning og energigjenvinnings-anlegg (WtE - Waste-to-Energy) kan redusere CO2-utslippene fra avfallsforbrenning betraktelig. Siden en del av karbonet i avfallet er av biogen opprinnelse, fjerner slik teknologi, kalt bioenergi med CCS (BECCS eller BioCCS), CO2 fra atmosfæren, noe som resulterer i såkalte "negative CO2-utslipp". Dessuten er potensialet for CCUS fra WtE økende i Europa og over hele verden når deponianlegg fases ut.
NEWEST-CCUS er et internasjonalt prosjekt koordinert av Edinburgh University og finansiert av ERA-NET Cofund ACT-programmet (Accelerating CCS Technologies), der SINTEF Energi AS er leder for det norske delprosjektet. Målet med NEWEST-CCUS er å akselerere utviklingen av CO2-fangstteknologier skreddersydd for effektiv drift av WtE-anlegg. NEWEST-CCUS har som mål å levere innovasjon for å etablere CCUS fra WtE, som en bidragsyter til kampen mot global klimaendring.
Innovasjonsfokuset er å øke TRL nivået for flere lovende teknologier for WtE-anlegg ved en kombinasjon av pilotskala-testing og modellering. Spesielt prosjektet fokuserte på å utvikle:
- Solvent-basert post-combustion fangst, spesielt kunnskap og teknologier som adresserer behovet for å håndtere flere forbrenningsforurensninger fra utfordrende brensel fra typiske WtE-anlegg.
- Oxy-fuel combustion-teknologier, med fokus på både circulating fluidized bed teknologi og ristfyrte kjeler.
- Membranbasert CO2-separasjon.
I tillegg en sammenligning av disse teknologiene har gitt nøkkeldata for WtE-bransjen, beslutningstakere og teknologiutviklere. Målinger og analyser som vil bli vurdert inkluderer konverteringseffektivitet av avfall, termisk effektivitet, råstoffets allsidighet, biogenisk karboninnhold i råstoffet, potensiell markedsinntrenging basert på geografisk kartlegging, egnethet for retrofit-montering og vurdering av miljøpåvirkning.
De siste aktivitetene i 2022 har fokusert på å:
- Fullføre prosessarkitekturen til en WtE i oxy-fuel-modus og undersøke oksygen- og resirkulerte røykgassfordelingen gjennom et CFD studie av en ristovn;
- Utføre energiintegrasjonsstudier for referanse WtE-anlegget med CCS for 3 driftsmodeller: kun kraft, middels CHP og komplett CHP, i samarbeid med University of Edinburgh;
- Studerer post-combustion fangst ved bruk av membranassistert flytende fangst for WtE røykgassforhold for kommersiell membran fra MTR. Den optimale prosessdesignen som kombinerer membran- og flytendegjøringsprosesser er også identifisert. Studiet viste potensialet til membranbasert post-combustion fangst kan være kompakt og kostnadseffektivt sammenlignet med MEA.
The NEWEST-CCUS project has established a research and innovation platform for the deployment of CCS across the European WtE sector thanks to the collaboration between academic and R&D institutions of 4 countries (UK, Norway, Germany, Netherlands) and the participation of more than 15 industrial partners in the Advisory Board, covering users and suppliers of technologies. It has allowed to:
- optimize CO2 capture design for integration in WtE plants for low energy use, cost and environmental impact, based on relevant WtE plant conditions provided by industry partners; and
- identify the potential of membrane assisted liquefaction process for WtE plants as an alternative capture method that is compact and cost-effective.
- establish credible scenarios at regional and national level, using techno-economic assessment methods.
For policy makers and the general public the project provided an evaluation of the potential of the sector for net cumulative atmospheric CO2 removal via environmental impact assessment and life cycle analysis. The results have been made widely accessible through the a series of newsletters prepared the project coordinator with various focus on technologies and research infrastructures used at the partners sites, information on the progress of known large industrial CCS projects for the WtE sector, and highlights of CCS in the partner countries.
The increased interdisciplinary (several capture technologies investigated and both technical and techno-economical studies) and international research collaboration are the major project impacts. In addition, ECCSEL infrastructures were used in two countries, highlighting the importance of the coordinated European network. The stakeholders which were gathered in the Advisory Board were represented by 9 European WtE plants operators and the association of European lants (CEWEP), 4 technology suppliers in the WtE sector, and 2 environmental agencies. This large coverage in addition to the focus on communication (topical newsletters) ensured that the research results will be widely spread amongst stakeholders such as public administration or companies. Of general interest to all stakeholders, we can name the results of WP5 where for example a market assessment of negative emissions from this sector was made and a sensitivity analysis through Life Cycle Assessment on future waste composition.
The focus of the NEWEST-CCS project is on an emerging market for CCS: the Waste to Energy Sector.
Waste to Energy is a growing sector across Europe in the context of phasing out landfill sites, with a yet to be characterised potential for negative emissions. NEWEST-CCS will assess the size of a potential European market for CCS in the sector and the cumulative net CO2 removal from atmosphere in Europe from waste combustion with CCS and landfill gas combustion with CCS. The innovation focus is on progressing TRL of technologies for greenfield and retrofit sites, with a combination of pilot-scale testing, modelling and testing at industrial sites. The project is linked to two newly awarded projects in partner countries and co-applicants: CapeWaste in Norway led by SER, and NuCA in Germany led by USTUTT, and thus form a platform for promoting the various capture technologies applicable to the WtE sector. In particular:
- Oxy-combustion in grate fired boilers, the conventional combustion method for challenging fuels, and in circulating fluidised beds, a technology with a potential for higher efficiency with Solid Recovered Fuels
- Solvent-based post-combustion capture: the project will evaluate a generic amine system representative of commercially available technologies with challenging fuels, and a 3rd generation solvent tailored for the handling of combustion impurities from challenging fuel flue gases and low-capex process configuration suited for medium-sized WtE thermal plants.
A comparative assessment of these technologies will provide key metrics for the sector, policymakers, regulators and developers, such as waste conversion, thermal efficiency, feedstock versatility, carbon negativity of feedstock, potential market penetration based on geographical mapping, size of plants and timescale, suitability for retrofits, environmental impact assessment and life cycle analysis