Tilbake til søkeresultatene

MAROFF-2-Maritim virksomhet og offsh-2

Data-Driven Degradation monitoring and prediction of BATteries for Maritime ApplicatioNs

Alternativ tittel: Data-Dreven Degraderingsovervåkning og prediksjon av BATterier for Maritime ApplikasjoNer

Tildelt: kr 4,8 mill.

Prosjektet har undersøkt data-drevne metoder for å estimere state of health (SOH) for maritime batterisystemer (lithium-ion) under operasjon, og dermed å monitorere batteri kapasitet og degradering. Batteri-tester har blitt gjort i laboratorier, hvor flere batteri-celler har vært ladet/utladet over lang tid med jevnlig kapasitetsmålinger. Dette har gitt ny innsikt i degradering av slike batterier, og fremskaffet data for data-drevne metoder. Disse dataene blir gjort offentlig tilgjengelige for andre forskere. I tillegg har prosjektet samlet inn operasjonelle data fra flere skipsinstallasjoner over flere år. En rekke forskjellige metoder for data-dreven kapasitetsberegning av batterier har blitt undersøkt. Dette inkluderer modeller som baserer seg på hele den operasjonelle historien til batteriene og modeller som baserer seg på øyeblikksbilder, samt maskin-lærings modeller som trenger å trenes opp på relevante treningsdata og modeller som ikke trenger å trenes opp på forhånd og hybride modeller som baserer seg på fysiske sammenhenger. Flere vitenskapelige publikasjoner er utgitt som beskriver forsøkene med disse modellene. Data-drevne metoder for pålitelig og nøyaktig monitorering av state of health har vist seg å være krevende, og alle metodene har sine styrker og svakheter, som beskrevet i prosjektrapporter og publikasjoner. En av de viktigste oppdagelsene i prosjektet er at rene data-drevne metoder kan være utilstrekkelig - med mindre enorme mengder treningsdata er tilgjengelige - og at hybride løsninger som kombinerer data med fysikk-baserte modeller kan være foretrukket. En slik modell er utviklet i prosjektet, som trekkes frem som den anbefalte løsningen, som kombinerer operasjonelle data med Coulomb counting og en equivalent circuit modell (ECM), samt look-up tabeller basert på omfattende karakteriseringstester. Prosjektet har demonstrert at ved å ta i bruk slike modeller, kan uavhengig verifikasjon av SOH oppnås direkte fra operasjonelle data uten dedikerte kapasitets-tester som innebærer at skipet må tas ut av operasjon for omtrent en dag per år. Dette representerer en viktig fremskritt og vil gjøre det enklere for leverandører og skipseiere å oppfylle klassekrav for skip som bruker batteri-energi for fremdrift. I en annen arbeidspakke har prosjektet studert integrasjon av et stort batteri-system på et eksisterende cruis-skip og gjennomført LCA analyser og studert andre aspekter ved slike hybride løsninger for cruise skip.

All ships encounter similar challenges when it comes to hybridizing their propulsion systems, particularly in the passenger shipping sector, within the context of the growing environmental debate, international legislation (IMO GHG Strategy), and evolving customer expectations. These challenges are relevant to both the operating fleet and the newbuilding programs of shipping companies. With the anticipated introduction of fuel cell systems, the importance of battery storage is expected to increase even further. Results from this project contribute to reduce the cost of battery energy storage systems for ships and hence promote uptake in the maritime industries. DNV has explored ways of utilizing sensor data from normal operations in ship classification of electric ships and for independent verification of state of health. This will contribute to make DNV a more attractive classification society for fully electric and hybrid ships in the future, and also contribute to make fully electric ships a more attractive alternative for ship owners, helping to promote zero-emission alternatives in shipping. DNV GRD has gained knowledge on maritime battery systems that will be exploited in future research projects, further promoting maritime green shipping solutions. Improved ways of collecting, sharing and analyzing maritime battery data has enabled Corvus Energy to develop their products and services, in particular with respect to the independent verification of battery capacity required by class societies. This also benefits their customers and other stakeholders. Improved condition monitoring of onboard battery systems, may also contribute to the safety of electric ships. Carnival Maritime is proactively exploring environmental and financial advancements for its managed ships and the broader fleet of Carnival Corporation. The ongoing commitment to sustainability, innovation and decarbonization has led to the evaluation of battery concepts across diverse ship classes. However, comprehensive details on financial considerations and the battery's State of Health throughout its lifetime are essential for well-informed decision-making. This applies to both retrofitting existing ships in the current fleet and incorporating batteries into newbuilding programs. The knowledge acquired from the project provides crucial information, contributing significantly to the operational efficiency of the fleet by enhancing both environmental and financial aspects. The projects outcomes are instrumental in optimizing the asset's lifetime, mitigating system failures, and maximizing the economic benefits of the technology. As a result, they not only justify, streamline, and reduce the costs associated with battery system applications but also facilitate their market introduction in the maritime sector. Data obtained from Fraunhofer ISE's laboratory tests will be made publicly available to support other researchers on battery degradation monitoring and related topics.

The use of battery systems for onboard energy storage is an attractive alternative for many shipping segments, both from an economic perspective with significant potential for cost savings, but also from an environmental, regulatory and societal perspective. However, the safety of battery-powered ships must be ensured. One critical aspect is the ability to deliver, at any time during operations, the power demand for safe and reliable propulsion, maneuvering and operation. Failure to do this may lead to intolerable accidents with severe consequences. Thus, a reliable estimation and prediction of the available energy stored in the battery at any time is of paramount importance. One of the objectives of this project is to develop data-driven methods for prognostics of battery systems and to provide means for verifying the battery state of health (SoH) based on real-time sensor measurements. Currently, such validation is based on an annual capacity test,which has several limitations. The test typically requires the ship to be taken temporarily out of service and it is believed that more accurate and reliable estimates of SoH can be obtained based on continuous sensor measurements so that variability in loads, temperatures and depth of discharge can be taken into account. Operational data are needed, and these will be collected in the project from ships in operation, and reliable and secure strategies for data collection, storage and sharing will be addressed. Moreover, additional insight will be obtained from laboratory testing under variable conditions. Focus will be on aspects related to battery systems for cruise ships, including battery lifetimes, replacement strategies, life cycle assessment and shore connection procedures. The project will set new standards for reliability and lifetime prognostics and deliver recommendations and give input to standards, recommended practices and class rules and main project results and findings will be reported.

Budsjettformål:

MAROFF-2-Maritim virksomhet og offsh-2