Tilbake til søkeresultatene

FRINATEK-Fri prosj.st. mat.,naturv.,tek

Equations in Motivic Homotopy

Alternativ tittel: Ligninger i motivisk homotopi

Tildelt: kr 10,9 mill.

En algebraisk varietet er samling av punkter hvor polynomer forsvinner. Algebraisk geometri er studiet av algebraiske varieteter. Når vi går tilbake til antikken, er mange sentrale problemer i matematikken opptatt av å telle og konstruere algebraiske varieteter. I nyere tid har algebraisk geometri brukt ulike verktøy og perspektiver som tilbys av algebraisk topologi, den kvalitative studien av geometriske figurer. Motivisk homotopiteori (også kalt A1-homotopiteori) er en disiplin innen algebraisk topologi som har spesielt nære bånd til algebraisk geometri. Mange av forskningsprosjektene i EMOHO dreier seg om telling av symmetrier og konstruksjoner av invarianter i motivisk homotopiteori.

This research project lies at the interface of algebraic geometry and homotopy theory, two pillars of contemporary mathematics. Algebraic geometry has ancient origins with many connections to real-world problems. Its goal is to understand the geometry of algebraic varieties or solutions sets of polynomial equations. Homotopy theory on the other hand is developed more recently and aims to study a general notion of shape; such invariants do not depend on the way a space is pulled or twisted, and is less rigid than the idea of shape studied in algebraic geometry. Perfectly shaped higher dimensional spheres are simple yet important building blocks for geometric structures. It turns out that spheres of different dimensions can fit together in only certain combinations to create more complicated geometric objects. The computation of stable homotopy groups of the sphere is among the most fundamental problems in homotopy theory. By importing the notion of spheres to the study of algebraic varieties one arrives at the modern subject of motivic homotopy theory. This idea provides novel ways for qualitatively describing the shapes of equations, and has in the past twenty-five years enjoyed spectacular successes in resolving open problems. Several arithmetic and geometric phenomena which appear delicate are invariant under motivc homotopies. The project addresses directly the heart of motivic homotopy theory by computing invariants like numbers, groups, rings, and sheaves to understand shapes. Motivic homotopy theory heavily utilizes the fact that the stable motivic homotopy category behaves like a derived category of modules. The motivic sphere behaves as a brave new system of numbers which has much deeper structures than numbers we use in our daily lives. Computing the symmetries of the motivic sphere is one of the overarching themes in the subject. This project aims to broaden and deepen our knowledge in this fundamental area of mathematics.

Publikasjoner hentet fra Cristin

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Aktivitet:

FRINATEK-Fri prosj.st. mat.,naturv.,tek