Tilbake til søkeresultatene

FRINATEK-Fri prosj.st. mat.,naturv.,tek

Reactor and process development for continuous non-catalytic fast hydrothermal liquefaction of lignin residue

Alternativ tittel: Reaktor- og prosessutvikling for kontinuerlig ikke-katalytisk hurtig hydrotermisk flytendegjøring av ligninrester

Tildelt: kr 10,7 mill.

Hydrotermisk flytendegjøring (HTL) er en lovende teknologi for bedre utnyttelse av ligninrester fra papir- og masseproduksjon. I prosessen benyttes varmt vann og høyt trykk (374oC, 22,1 MPa) til å konvertere lignin til bioolje (HTL olje). Hurtig oppvarming under prosessen (hurtig HTL) bidra til å forbedre olje-produksjonen og -kvaliteten. Ved NTNU, Institutt for energi- og prosessteknikk, har vi utviklet en reaktorteknologi til dette formålet (hurtig HTL). Målet for dette prosjektet er å videreutvikle og optimalisere denne teknologien ved hjelp av teoretiske og eksperimentelle studier. En forbedring av HTL teknologien vil gjøre denne mere konkurransedyktig og øke utnyttelsen av ligninrester. Prosjektet vil bidra til å styrke Norge sin rolle innenfor bioenergi, bioraffineri og sirkulær bioøkonomi.

This project deals with CFD (Computational Fluid Dynamics) study, optimization, and experimental validation of a reactor and process, based on the concept of nozzle reactor, for continuous non-catalytic fast hydrothermal liquefaction (HTL) of lignin residue, in conditions relevant for industrialization. A nozzle reactor is essentially a pipe-in-pipe concentric setup in which the internal pipe has an open-ended nozzle. A hot stream of pure water is fed through the internal pipe, reaching out at the exit end (nozzle) of the pipe. A cold stream of biomass solution is fed through the outer pipe. At the nozzle exit, the hot and cold streams impinge to each other causing a forced mixing process. As a result, very good mixing and thus high heating rates can be achieved in the reactor. In addition, the reactor is capable of creating strong net downstream flow/eddies for rapid transport of particles out of the reactor, to prevent particle accumulation and deposition within the reactor. Therefore, the reactor is very suitable for fast HTL. ANSYS Fluent will be employed for the CFD study, focusing on the mixing dynamics in the reactor and how to optimize the mixing of the hot and cold streams at different scales. An experimental setup will be optimized accordingly for empirical validations of the result from the CFD study, employing water soluble lignosulfonates as lignin residue. Results from the CFD study and experimental validation will be used for a techno-economic assessment employing Aspen Plus software. This is a 3-year project developed under collaboration between established researchers from Norwegian University of Science and Technology - Department of Energy and Process Engineering and the University of Valladolid - Department of Energy and Fluid Mechanics, supported by Borregaard AS as industrial partner and potential user.

Aktivitet:

FRINATEK-Fri prosj.st. mat.,naturv.,tek