Tilbake til søkeresultatene

NANO2021-Nanoteknologi og nye materiale

Norwegian Marine Biopolymers as Injectable Hydrogels for Tissue and Organ Repair – TUNIGUIDE

Alternativ tittel: Norske marine biopolymerer som injiserbare hydrogeler til reparasjon av vev og organ - TUNIGUIDE

Tildelt: kr 12,0 mill.

Prosjektnummer:

317790

Prosjektperiode:

2021 - 2023

Prosjektet utviklet injiserbare, in situ gelerende hydrogelformuleringer basert på norske marine biopolymerer, tunikat nanocellulosefibriller og alginat, for reparasjon og regenerering av vev og organer. Mangel på donororganer er et alvorlig globalt problem som resulterer i høy dødelighet blant mennesker på ventelister for transplantasjoner og fører til at noen mennesker får organer gjennom ulovlige, uetiske veier. Vevsteknikk, der biomaterialer kombineres med celler, tilbyr et alternativ for å løse dette helseproblemet. Vi genererte hydrogeler, materialer sammensatt av et hydrofilt polymernettverk som er i stand til høy hydrering, og som kan stilles inn for å levere terapeutiske midler eller celler til skadede steder. Vi vurderte forskjellige varianter av disse nanocellulose/alginathydrogelene og evaluerte deres reologiske egenskaper, injiserbarhet og, ved retensjon på stedet, både in vitro og in vivo dyremodeller. Våre studier fant at disse hydrogelene kvalifiserte som biokompatible produkter i henhold til ISO 10993-5,12,20. Hydrogelene bestod også testene for patogene mikroorganismer (biobelastning) og endotoksindeteksjon, i henhold til FDA og European Pharmacopeia-standarder. Vi fant også at tunikat nanocellulose/alginathydrogeler var biokompatible i en Wistar-rottestudie og ble funnet å være ikke-irriterende sammenlignet med kontroller av ofte brukte Gortex kirurgiske masker. I motsetning til kirurgisk implanterte materialer, gir injiserbare hydrogeler nye veier for minimalt invasiv levering som vil redusere tilhelingstiden, redusere arrdannelse og redusere risikoen for postoperative infeksjoner. Full realisering av denne tilnærmingen vil redusere kostnadene for sykehusene betydelig og resultere i mindre smerte for pasientene. Dette er viktige translasjonsaspekter for å bringe regenerative behandlinger inn i klinikken.

The biomaterials market driving tissue engineering is expected to grow to 207 billion USD by 2024. Through this project, we have developed 3 new versions of modified tunicate nanocellulose (TUNICELL) biomaterials. Two of these, TEMPO-mediated oxidized TUNICELL (TTC), and carboxymethylated TUNICELL (CTC) have now been released on the market. A third variant, periodate oxidized TUNICELL, to serve as a base platform for grafting of biologically active agents, is now undergoing scale up and quality control assessments with an anticipated market release in 2024. The ambition is to capture 5% of the biomaterial hydrogel market. For targeted end-user groups, hospitals, clinicians and patients, achieving project goals will reduce transplants and implants, lower costs, mean faster recovery and reduced pain for patients, require fewer skilled personnel and less specialized equipment in operating theatres and translate to easier adoption in medical billing practices. Through our project publication and outreach activities, the tissue engineering research community has been apprised of the advantages of using TUNICELL hydrogels in their applications and have developed competence in the use of such hydrogels. As a testament to this, 7 additional publications in internationally peer-reviewed journals, using TUNICELL variants, by early adopter groups outside of the project itself, have appeared during the project period. Broader societal impacts include development of marine biotech, stimulation of low trophic aquaculture, and with scale-up, opportunities to produce local, high value feed ingredients, advanced, sustainable biomaterials applications and reduced pressures on terrestrial land use. At the end of 2022, Ocean TuniCell AS was awarded the Bergen Commune company start-up prize, and the activities and results in the TUNIGUIDE project contributed towards reception of this award.

This project will develop biocompatible, injectable, in situ gelling hydrogel formulations based on Norwegian marine biopolymers, tunicate nanocellulose fibrils and alginate, for tissue and organ repair and regeneration. Donor organ shortages are a serious global problem resulting in high mortality rates of people on transplant waiting lists and leads some people to obtain organs through illegal, unethical pathways. Tissue engineering, in which biomaterials are combined with cells, offers an important alternative to help resolve this global healthcare problem. Hydrogels, materials composed of a hydrophilic polymer network capable of high hydration, yet retaining structural integrity, are attractive biomaterials in that they are biocompatible and can be tuned to deliver therapeutic agents or cells to damaged sites. Biocompatible hydrogels can act as scaffolds supporting growth of cells to promote tissue or organ repair. In contrast to surgically implanted materials, injectable hydrogels provide a new avenue of minimally invasive delivery that will reduce healing time, reduce scarring and decrease the risk of post-operative infections. Realization of this approach would significantly lower costs for hospitals and result in less pain for patients. These are important translational aspects in bringing regenerative treatments into the clinic and will involve development of biocompatible, GMP accredited biopolymers with application-specific, tunable properties. The project focus will be in tuning the injectability, in situ gelling properties and release rates to guide bioactive components for specific therapeutic applications. Studies designed to control fibril lengths, orientation/alignment, surface modifications and crosslinking kinetics, will be carried out to optimize flow and diffusion properties for specific tissue applications. Selected preclinical assessments will be carried out in 3 different tissue types.

Publikasjoner hentet fra Cristin

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Budsjettformål:

NANO2021-Nanoteknologi og nye materiale