Tilbake til søkeresultatene

IKTPLUSS-IKT og digital innovasjon

AIforScreening: Robust and trustworthy AI for breast cancer screening with mammography

Alternativ tittel: AIforScreening: Robust og pålitelig AI for brystkreftscreening med mammografi

Tildelt: kr 12,0 mill.

AIforScreening: Robust og pålitelig AI for brystkreftscreening Dette forskningsprosjektet ser på metoder og tilnærminger for å oppnå robust og pålitelig kunstig intelligens (AI) til bruk for analyse av mammogrammer i brystkreftscreening. Prosjektet ledes av Norsk Regnesentral, med eksperter innen bildeanalyse og AI, og gjennomføres i samarbeid med et team av medisinske eksperter fra Kreftregisteret, de norske brystsentrene og Karolinska Universitetssykehus. Prosjektet har som mål å bidra til forskning og utvikling av metoder som kan gi robuste og pålitelige AI-metoder for mammografi-screening. Bruk av AI innenfor slik screening kan gi økt kapasitet og bidra til å oppdage flere krefttilfeller. Det kan igjen bety sparte liv og en forbedret helsetjeneste, men krever at en har AI-løsninger som virker over tid og er pålitelige. Det er også et behov for å forstå effektene av å introdusere og bruke AI i en slik sammenheng. Kunstig intelligens ved bruk av dype nevrale nettverk har vist et potensiale til å kunne øke sensitiviteten for å oppdage kreft i mammografi-screening. Det antyder at AI kan ha en rolle som bidrag til å oppdage kreft tidlig. Den virkelige verden er imidlertid mye mer kompleks og mangfoldig enn de kontrollerte forskningsomgivelsene der dette har vært testet. Det er derfor et behov for å se nærmere på hva som skal til for å bringe dagens lovende resultater videre ut til den virkelige verden og sykehushverdagen. For å adressere dette ser vi på hvordan en kan oppnå robust AI-screening over tid gjennom utvikling av metoder som kan håndtere variasjoner i bilder mellom laboratorier og over tid, som kan utnytte data fra flere undersøkelser og som er tilpasset bruk i en klinisk sammenheng i kombinasjon med radiologens analyse. Vi vil også se på hvordan vi kan sikre at tilnærmingene er pålitelige gjennom å se på metoder for å forklare og forstå AI-resultatene og studere hvordan integrasjon av AI i prosessen kan påvirke radiologens beslutninger. Prosjektet startet i sommer og hittil var vi arbeidet meste med å få tilgang til data og godkjenninger av hensyn til personvernet. Vi har laget en første AI-algoritme som har lovende resultater og et godt utgangspunkt for videre arbeid.

This research project will develop AI methods and approaches for robust, sustainable and trustworthy breast cancer screening with mammography. We expect findings will be transferable to other medical screening programs. Breast cancer is the most common cancer and the leading cause of cancer death among women worldwide. Early detection of breast cancer through screening is recommended by international health organizations to reduce this mortality. It is considered to expand the screening program by examining more women. The use of AI can lead to a larger capacity to do screening and detect cancers, reduce overdiagnosis, and by this save lives and give new opportunities for improved health services. Furthermore, we need to understand the effects of using AI in this context. To address this, the project will involve AI experts, medical experts, organizers and practitioners within mammographic screening to create a strong interdisciplinary team. The main novelties of the proposed project are: * Develop methods that can handle domain shifts without costly annotation of new data. Current methods have problems handing images from different equipment, operators and cohorts. * Exploitation of time series in AI breast cancer screening. Radiologists exploit prior mammograms when doing their manual reading, while it is rarely used in current AI-based models. * Interpretation of predictions from AI breast cancer models such that radiologists can understand the predictions. This gives trust and makes it easier to improve the AI method and combine this with manual reading by radiologists. * Find the differences in the prediction between radiologist and AI both statistically and using data collected in the screening program as a basis when we combine the two methods. * Develop AI systems that is usable for radiologists in mammographic screening utilizing the strength of each approach. A new screening program should give better predictions and use less radiology resources.

Publikasjoner hentet fra Cristin

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Aktivitet:

IKTPLUSS-IKT og digital innovasjon

Temaer og emner

HelsePortefølje Muliggjørende teknologierPolitikk- og forvaltningsområderForskningIKT forskningsområdeMenneske, samfunn og teknologiLTP2 Et kunnskapsintensivt næringsliv i hele landetPortefølje Demokrati, styring og fornyelsePortefølje Naturvitenskap og teknologiBransjer og næringerHelsenæringenResponsible Research & InnovationResponsible Research & InnovationRRI MedvirkningLTP2 Styrket konkurransekraft og innovasjonsevnePortefølje LivsvitenskapLTP2 Innovasjon i stat og kommuneDigitalisering og bruk av IKTIKT forskningsområdeBransjer og næringerIKT-næringenInternasjonaliseringLTP2 Helse, forebygging og behandlingLTP2 Utvikle fagmiljøer av fremragende kvalitetFornyelse og innovasjon i offentlig sektorPolitikk- og forvaltningsområderPolitikk- og forvaltningsområderDigitaliseringIKT forskningsområdeKunstig intelligens, maskinlæring og dataanalyseIKT forskningsområdeVisualisering og brukergrensesnittLTP2 IKT og digital transformasjonLTP2 Fagmiljøer og talenterPolitikk- og forvaltningsområderNæring og handelBransjer og næringerTjenesterettet FoUPortefølje Industri og tjenestenæringerDigitalisering og bruk av IKTOffentlig sektorPolitikk- og forvaltningsområderHelse og omsorgFornyelse og innovasjon i offentlig sektorInnovasjonsprosjekter og prosjekter med forpliktende brukermedvirkningKjønnsperspektiver i forskningKjønnsperspektiver i forskningKjønn som perspektiv i problemstillingLTP2 Fornyelse i offentlig sektorPortefølje HelseGrunnforskningAnvendt forskningInternasjonaliseringInternasjonalt prosjektsamarbeidLTP2 Muliggjørende og industrielle teknologier