Tilbake til søkeresultatene

BIA-Brukerstyrt innovasjonsarena

LandSkape - Hybrid Physical-Based Deep Learning for Fast and Reliable Wind Flow Estimation

Alternativ tittel: LandSkape - Hybrid fysisk basert dyplæring for rask og pålitelig vind estimering

Tildelt: kr 4,9 mill.

Prosjektleder:

Prosjektnummer:

327897

Prosjektperiode:

2021 - 2023

Midlene er mottatt fra:

Geografi:

Vindmiljøanalyser for fotgjengere vil bli en kritisk faktor i utformingen av by- og bygningsplanlegging gitt kompleksiteten i moderne byområder. Dette vil bidra til å sikre generell trivsel, sikkerhet og komfort i gågater. Bruken av væskestrømssimuleringer gjør at arkitekter og ingeniører kan forutsi og optimalisere utformingen og ytelsen til bygninger i et tidlig stadium av designprosessen. Særlig i tilfeller der rask iterasjonstid er ønsket, kan raskere datadrevne læringsbaserte surrogatmodeller gi en god tilnærming til simuleringen. Spesielt på grunn av deres evne til å lære komplekse spatiale mønstre og avhengigheter, representerer Deep Neural Network-baserte arkitekturer en rask og alternativ løsning for effektivt å nærme seg kartleggingsfunksjonen i høyere dimensjonale rom. De viktigste fordelene ved å bruke DNN-basert arkitektur som en surrogatmodell vil være 1) ha en modell med høy grad av generalisering 2) relativt rask treningstid (i en annen størrelsesorden enn CFD-simulering) 3) raske slutninger som et resultat av interaksjon under designprosessen. Oppsummert gir tradisjonelle CFD-metoder resultater med høy nøyaktighet, men de er beregningsmessig kostbare og fungerer ikke godt i designprosessen for nye prototyper i et gitt domene. For å oppnå resultater tar det ofte flere timer eller dager, avhengig av prototypens kompleksitet. Vi tar sikte på å utforske dyp læring med formål å lage et interaktivt verktøy for å teste nye design, selv når det blir vanskelig å beregne fysiske løsninger. Spesielt planlegger vi å gå i en lignende retning ved å definere DL-baserte arkitekturer som kan generere vindstrømmer for vilkårlig utformede bygninger i scenarier av ulik kompleksitet (bykart), motivert av å bygge en surrogatmodell som kan brukes i et interaktivt verktøy for smarte bygningsvurderinger.

With the complexity of modern urban areas, the pedestrian wind environment analysis becomes a critical factor in urban and building planning design, helping to ensure the overall well-being, safety, and comfort in pedestrian zones. The usage of fluid flow simulation enables architects and engineers to predict and optimize the performance of buildings in the early stage of the design process. Especially for cases where fast iteration time is desired, the faster data-driven learning-based surrogate model can represent a reasonable approximation of the simulation. In particular, due to their capabilities in learning complex spatial patterns and dependencies, Deep Neural Network-based architectures represent a fast and alternative solution for efficiently approximating mapping function in high dimensional spaces. The main advantage of using DNN-based architecture as a surrogate model, will be 1) having a model with a high degree of generalization 2) relatively quick training time (different magnitude in comparison to CFD simulation) 3) quick inference with the advantage of interaction during the design process. In summary, traditional CFD methods produce high-accuracy results, but they are computationally expensive and does not work well in the design process of new prototypes in a given domain. To obtain results, it often takes several hours or days, depending on the prototype’s complexity. We aim to explore deep learning with the objective of creating an interactive tool for testing new designs, even when they are getting computationally hard for physical solvers. In particular, we plan to go in a similar direction and define DL-based architectures that can generate wind flows for arbitrarily shaped buildings in scenario of different complexity (city maps) with the motivation of building a surrogate model that can be used in an interactive tool for smart building assessments.

Publikasjoner hentet fra Cristin

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Budsjettformål:

BIA-Brukerstyrt innovasjonsarena