Tilbake til søkeresultatene

IKTPLUSS-IKT og digital innovasjon

EuroHPC-prosjekt MICROCARD: Numerical modeling of cardiac electrophysiology at the cellular scale

Tildelt: kr 2,6 mill.

Kardiovaskulær sykdom er den hyppigste årsaken til død i hele verden, og halvparten av slike kardiovaskulære dødsfall skyldes hjertearytmi som opptrer når de elektriske impulsene i hjertet ikke fungerer normalt og dermed ødelegger hjertets elektriske synkroniseringssystem. Matematiske modeller, samt simuleringer av disse modellene på datamaskin, er veldig viktige for å forstå det elektriske synkroniseringssystemet og hvorfor syke tilstand oppstår. I dag er allerede avanserte matematiske modeller brukt i forskning, men disse modellene er ikke i stand til å studere alle individuelle cellene i hjertet (ca. 2 milliard celler). Derfor må forskerne ty til en kraftig tilnærming og nøye med mye lavere oppløsninger i simuleringene. Dagens matematiske modeller kan f.eks. ikke forklare sykdommens forløp i aldrende og strukturelt syke hjerter, hvor en redusert elektrisk kobling kan føre til store forskjeller mellom naboceller, som har en potensielt dødelig konsekvens. For å kunne modellere og dermed simulere de individuelle cellene i et helt hjerte, må vi takle et matematisk problem som er ca. 10000 ganger større og vanskeligere å løse enn dagens standard. Vi trenger derfor mye kraftigere superdatamaskiner samt nye oppfinnelser som kan sikre en effektiv bruk av disse superdatamaskinene. Hovedmålet til prosjekt MICROCARD, som består av 11 europeiske partnere, er å utvikle programvare som kan brukes til å løse dette ekstremt utfordrende problemet på fremtidige exascale superdatamaskiner. Vi skal også lage nye numeriske algoritmer som er spesielt tilpasset det underliggende matematiske problemet, og som passer for fremtidens ultrakraftige datamaskiner. Vi vil ikke nøye oss med et "proof of concept", men skal bruke den utviklede programvaren til å løse realistiske problemer innen kardiologi. Suksess til prosjektet vil være basert på et velfungerende team av dataeksperter, matematikere og biomedisinske ingeniører, støttet av et samarbeid med kardiologer og fysiologer.

Cardiovascular diseases are the most frequent cause of death worldwide and half of these deaths are due to cardiac arrhythmia, a disorder of the heart's electrical synchronization system. Numerical models of this complex system are highly sophisticated and widely used, but to match observations in aging and diseased hearts they need to move from a continuum approach to a representation of individual cells and their interconnections. This implies a different, harder numerical problem and a 10,000-fold increase in problem size. Exascale computers will be needed to run such models. We propose to develop an exascale application platform for cardiac electrophysiology simulations that is usable for cell-by- cell simulations. The platform will be co-designed by HPC experts, numerical scientists, biomedical engineers, and biomedical scientists, from academia and industry. We will develop, in concert, numerical schemes suitable for exascale parallelism, problem-tailored linear-system solvers and preconditioners, and a compiler to translate high-level model descriptions into optimized, energy-efficient system code for heterogeneous computing systems. The code will be parallelized with a recently developed runtime system that is resilient to hardware failures and will use an energy-aware task placement strategy. The platform will be applied in real-life use cases with high impact in the biomedical domain and will showcase HPC in this area where it is painfully underused. It will be made accessible for a wide range of users both as code and through a web interface. We will further employ our HPC and biomedical expertise to accelerate the development of parallel segmentation and (re)meshing software, necessary to create the extremely large and complex meshes needed from available large volumes of microscopy data. The platform will be adaptable to similar biological systems such as nerves, and components of the platform will be reusable in a wide range of applications.

Publikasjoner hentet fra Cristin

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Budsjettformål:

IKTPLUSS-IKT og digital innovasjon