Å kunne lagre CO2 i geologiske formasjoner er nødvendig dersom målet om klimanøytralitet skal nås innen 2050. For å sikre at CO2-en holder seg i reservoaret er det nødvendig å overvåke aktiviteten. I tillegg må overvåkningen kunne identifisere en potensiell propagasjon av CO2 i lageret i uønskede retninger og varsle om deformasjon som kan føre til lekkasje. Den mest effektive måten å overvåke små, raske deformasjoner i undergrunnen er ved mikroseismisk overvåkning. Prosessering i sanntid og tolkning av lokasjon, størrelse og typen av deformasjon gir en informasjonsbase før avbøtende tiltak.
ENSURE-prosjektet fokuserte på å fremme mikroseismisk overvåkingsteknologi for karbonfangst og -lagring (CCS), med mål om å forbedre dataintegrasjon, behandlingsmetoder og strategier for offentlig engasjement. Gjennom samarbeid med industri ledere og akademiske institusjoner adresserte prosjektet betydelige utfordringer innen CCS-overvåking, validering og offentlig oppfatning. Vi utviklet løsninger som bidrar til mer effektive, kostnadseffektive og transparente CCS-implementeringer.
Samarbeidet fasiliterte kunnskapsdeling og bidro til utviklingen av anbefalinger for kostnadseffektive og formålstilpassede overvåkingsnettverk for CCS-anlegg, sammen med en kommunikasjonsstrategi.
Videre arbeider vi med å utvikle kommunikasjonsstrategier for CO2-lagring tilpasset ulike målgrupper. Vi har gjennomført en omfattende undersøkelse av folks oppfatning av CCS og et økonomisk eksperiment i 5 land (Norge, Tyskland, Nederland, Storbritannia, Canada). Dette resulterte i en bedre forståelse av offentlighetens oppfatninger om CCS, spesielt med tanke på bekymringer om indusert seismisitet. Transparent kommunikasjon og klare risikoreduseringsstrategier fremkom som viktige faktorer for å fremme offentlig aksept for CCS-prosjekter.
Dette prosjektet har gjort betydelige bidrag både til teknologisk og sosial utvikling av CCS.
The project contributed significantly to the facilitation of the emergence of CCUS by increasing the technology readiness level of microseismic monitoring, which is one of the most important vehicles for fostering public acceptance of CCS projects if handled in a transparent way. To this end, the project’s international public acceptance survey and economic scenario modeling provided significant insight to both operators and regulators. This will be of tremendous value in future projects for the development of effective communication strategies and will therefore further facilitate the success of CCUS projects.
The project contributed to strengthening the competitiveness of its industry partners and thus to the growth of European companies. Our industrial partners included operators as well as service companies.
In particular, ENSURE has demonstrated and documented the application of the following data acquisition and analysis techniques:
• The use of hybrid monitoring networks, built from combinations of complementary subsystems (surface and downhole; seismometers and DAS), to provide more cost-effective coverage and improved detection and location performance was demonstrated.
• Advanced data processing methods were shown to significantly improve the performance of event detection and location by respectively 200% and 70% compared to a vendor-provided catalog. Enlarged event catalogs provide opportunities to gain more pertinent insights into the reservoir and surrounding rock behavior, thereby increasing conformance and containment detection capabilities.
• We demonstrated how S/N ratio and location performance can be improved through employing array processing techniques.
• An in-well DAS system was used at Quest to acquire microseismic data – these results from Quest and data from the TotalEnergies test site in Southern France showed that DAS data acquisition and event detection capabilities have now improved to the point at which DAS can be considered as a complement or alternative (with certain caveats) to conventional seismometer recordings.
• The findings from the survey of the public perception and acceptance of CCS inform the development of strategies for external communication and stakeholder engagement.
• Traffic light systems (TLS) for seismicity control from a range of sites were compared and the causes and impact of event magnitude uncertainty on TLS operation was highlighted.
The survey on public perception and acceptance of CCS that was run in five countries contributed significantly to understanding the interaction and dynamics between operators, regulators and the public. This will be invaluable when planning the next project to ensure public engagement and communication is handled in the most effective way for fostering acceptance. Lessons learned from the social study and socioeconomic analysis allow better and more targeted public engagement, particularly in the light of increased polarization of the public.
Our aim is to advance microseismic monitoring technology to become the accepted tool for seal integrity verification in large-scale CCS operations. This requires a robust identification of insufficient microseismic detection capability, advanced microseismic processing tools for long-term seal stability assessment as well as analyzing differences in public views and perceived risks towards CCS-induced seismicity. We plan to reach this goal through developing advanced analysis tools and comparing data, partly existing and partly newly acquired, from a variety of sensor types and networks at various sites, including fiberoptic sensors. This will lead to design recommendations for cost-effective fit-for-purpose networks and provide a strategy for translation of seismological observables into traffic-light-system threshold values. Public perceptions will be assessed by state-of-the-art empirical socio-economic survey methods using scenarios and parameters provided by the seismological analysis. This will result in recommendations on effective communication strategies for advancing public trust in CCS technology.
This comprehensive, data-driven study is the first of its kind to not only assess but also optimize the quality and efficiency of microseismic monitoring for CCS seal integrity verification. The existing monitoring infrastructure that we will have access to through our industry partners is unprecedented in CCS context and will, for the first time, provide the means to conduct a comparative analysis of real CCS microseismic monitoring data. We anticipate to improve the reliability and accuracy of traffic light systems and hazard forecasts by identifying seismological discriminants and tools to guide feedback loops and decision support systems. Since our project brings together key industry players with academic institutions, we will provide a focused key contribution to accelerate the time to market for CCS technology.