UVC-lys ved en bølgelengde nær 265 nm har den utrolige evnen til å drepe 99,9 % av bakterier og virus ved å forstyrre deres DNA. UVC-lys brukes derfor i økende grad på vanlige løsninger, som overflate-, luft- og vanndesinfeksjon. I dag er den enkleste og billigste måten å produsere UVC-lys på ved å bruke kvikksølvdamplamper, som derfor dominerer nesten hele UVC-lysmarkedet. Disse UVC-lampene inneholder imidlertid fordampet kvikksølv, som produserer UVC-lys når elektrisitet tilføres lampen. Dette fordampede kvikksølvet er svært giftig for mennesker, og derfor, siden 2017, i samsvar med FNs Minamata-konvensjon, har EU forbudt bruk av kvikksølv i de fleste bruksområder, og det er desperat behov for en etterfølger.
Halvleder-LED kan også generere lys i UVC-området for desinfeksjon, men med betydelig redusert effekt på veggplugg på bare 1-5 %. Kjerneteknologien til dagens UVC LED-er må derfor optimaliseres betydelig, spesielt materialegenskapene og designen til LED-en og måten den er produsert på. Ny forstyrrende innovasjon er derfor påtrengende nødvendig, før UVC LED-er kan oppnå betydelige gevinster i markedet for milliard-dollar-lamper og fullstendig eliminere UVC-sektorens avhengighet av kvikksølv.
CrayoNano revolusjonerende ny tilnærming for å produsere UVC LED, basert på nanotråder-på-grafen, har potensial til å eliminere manglene ved tradisjonell tynnfilmbasert UVC LED-design og produksjon. Nanotråder dyrket på grafen omgår fullstendig problemene med gittermismatch og vi kan dermed dyrke høykvalitets krystallinske (nesten dislokasjonsfrie) AlGaN nanotråder. I vår UVC LED-design brukes grafen også som en innebygd transparent elektrode. Dette vil gi et gjennombrudd i produksjonen av kostnadseffektive UVC-lysdioder og tillate desinfeksjons- og steriliseringsbehandlinger i mye større skala om noen år.
Popular science presentation - in Norvegian
UVC-lys ved en bølgelengde nær 265 nm har den utrolige evnen til å drepe 99,9 % av bakterier og virus ved å forstyrre deres DNA. UVC-lys brukes derfor i økende grad på vanlige løsninger, som overflate-, luft- og vanndesinfeksjon. I dag er den enkleste og billigste måten å produsere UVC-lys på ved å bruke kvikksølvdamplamper, som derfor dominerer nesten hele UVC-lysmarkedet. Disse UVC-lampene inneholder imidlertid fordampet kvikksølv, som produserer UVC-lys når elektrisitet tilføres lampen. Dette fordampede kvikksølvet er svært giftig for mennesker, og derfor, siden 2017, i samsvar med FNs Minamata-konvensjon, har EU forbudt bruk av kvikksølv i de fleste bruksområder, og det er desperat behov for en etterfølger.
Halvleder-LED kan også generere lys i UVC-området for desinfeksjon, men med betydelig redusert effekt på veggplugg på bare 1-5 %. Kjerneteknologien til dagens UVC LED-er må derfor optimaliseres betydelig, spesielt materialegenskapene og designen til LED-en og måten den er produsert på. Ny forstyrrende innovasjon er derfor påtrengende nødvendig, før UVC LED-er kan oppnå betydelige gevinster i markedet for milliard-dollar-lamper og fullstendig eliminere UVC-sektorens avhengighet av kvikksølv.
CrayoNano revolusjonerende ny tilnærming for å produsere UVC LED, basert på nanomaterialer- og strukturer, har potensial til å eliminere manglene ved tradisjonell tynnfilmbasert UVC LED-design og produksjon. Nanopillarer omgår problemene med gittermismatch og vi kan dermed produsere høykvalitets krystallinske (nesten dislokasjonsfrie) AlGaN nanopillarer. En større aktiv overflate finnes i disse tredimensjonale pillarene, noe som igjen resulterer i mer effektive dioder. Dette vil gi et gjennombrudd i produksjonen av kostnadseffektive UVC-lysdioder og tillate desinfeksjons- og steriliseringsbehandlinger i mye større skala om noen år.
Popular science presentation - in English
UVC light at a wavelength near 265 nm has the incredible ability to kill 99.9% of bacteria and viruses by disrupting their DNA. UVC light is therefore being increasingly applied to mainstream solutions, such as surface, air and water disinfection. Today, the easiest and cheapest way of producing UVC light is by using mercury-vapor lamps, which therefore dominate almost all the UVC light market. These UVC lamps, however, contain vaporized mercury, which produces UVC light when electricity is applied to the lamp. This vaporized mercury is very toxic to humans and therefore, since 2017 in accordance with the UN’s Minamata Convention, EU bans the use of mercury in most applications and a successor is desperately needed.
Semiconductor LEDs can also generate light in the UVC region for disinfection, but with significantly reduced wall plug efficiencies of only 1-5%. The core technology of today’s UVC LEDs therefore needs to be significantly optimized, particularly the material properties and design of the LED and the way that it is manufactured. New disruptive innovation is therefore urgently needed, before UVC LEDs can make substantial gains in the billion-dollar lamp market and fully eliminate the UVC sector’s reliance on mercury.
CrayoNano's revolutionary new approach to produce UVC LEDs, based on nanomaterials- and structures, has the potential to eliminate the shortcomings of traditional thin-film-based UVC LED design and production. Nanopillars circumvent the problems of lattice mismatch and we can thus produce high quality crystalline (near dislocation-free) AlGaN nanopillars. A larger active area can be found in these three-dimensional pillars, which in turn results in more efficient diodes. This will offer a breakthrough in the making of cost-efficient UVC LEDs and allow disinfection and sterilization treatments on a much larger scale in a few years time.
Budsjettformål:
TEKNOKONVERGENS-Teknologikonvergens - grensesprengende forskning og radikal innovasjon