En rekke industrielle prosesser er avhengige av eller har utfordringer med tilstedeværelsen av bobler eller dråper spredt i en væske. Mange av disse industrielle prosessene drifter systemet slik at væsken med de spredte boblene eller dråpene strømmer på en turbulent/kaotisk måte. Selv om den turbulente strømmen er kaotisk, tror vi at det eksisterer en viss organisert struktur i strømmen som kan beskrives matematisk. Likevel har vi ikke forstått hvordan disse organiserte strømningsstrukturene påvirker boblene eller dråpene slik at de deformeres og eventuelt brytes opp. Vi forstår heller ikke hvilken rolle de organiserte strømningsstrukturene har i den molekylære transporten over grensen mellom boblen/dråpen og den omgitte væsken. Dette prosjektet vil avdekke grunnleggende forståelse av spredt flerfasestrøm og bruke denne nye kunnskapen til å foreslå et helt nytt grunnlag for neste generasjons modeller.
Turbulence plays an enormous importance in many industrial applications. In industries concerned with dispersed drops-in-liquid or bubble-in-liquid flow, the drops/bubbles may fragment (the breakup phenomenon), merge (the coalescence phenomenon), or undergo phase transition (the interface mass transfer phenomenon). The available (CFD) models for these phenomena share the common feature that they are based on simplistic hypothesis for how turbulence interacts with the drop/bubble interface. The absent understanding of the mechanisms of turbulence-interface interactions constitutes a bottleneck for developing predictive models. Our underdeveloped understanding of these mechanisms has remained since the first proposed models; thus, constituting a nearly half-century-old problem. With the significant development of numerical methods and computational capacities in recent years, this model problem can finally be addressed. This project will break with the old traditions, and approaches the modelling of turbulence in interface mass transfer, breakup, and coalescence from a wholly new direction. For the first time the underlying mechanisms for turbulence-interface interactions will be uncovered. This will be a breakthrough in our physical understanding and allow a new theoretical foundation for developing the models for interface mass transfer, breakup, and coalescence without today's gross limitation. The ultimate results from this project is to establish the next-generation framework for modellers and users of CFD who are concerned with turbulent dispersed flow. This project certainly addresses a hard problem and its realization requires an interdisciplinary approach. It has thus been a great emphasis on international collaboration to enable the ambiguous scientific advancements of the project.