Det er en utfordring å lime ting sammen under vann. I sjøvann er dette enda vanskeligere på grunn av saltinnholdet, noe som resulterer i at styrken og holdbarheten til undervannslim er begrenset. Dette er et problem for bruksområder i maritim industri som undervannsrobotikk, undervannsreparasjon og tetting av lekkasjer under vann.
SEAD-prosjektet vil utvikle nye miljøvennlige materialer som kan brukes som holdbart og permanent undervannslim for bruk i sjøvann. Dette limet kan brukes til reparasjon av undervanns-strukturer, festing av sensorer osv. I tillegg vil vi utvikle reversibelt lim (post-it-lapp effekt) for føttene til marine roboter og andre ting som trenger midlertidig feste.
For å oppnå ønsket effekt vil vi kombinere kunnskap om mekanismene som livet i havet bruker for å feste seg til overflater under vann (biomimikk) med avansert kjemi og adhesjonsfysikk.
Sustainable underwater adhesion is a significant challenge for applications in marine industry such as underwater robotics, underwater repair, and subsea sealants. This is especially apparent in seawater with its elevated ion content. Since organisms like mussel and octopus excel in underwater adhesion, synthetic adhesives mimicking mussel-inspired adhesive chemistry or octopus-inspired adhesive structure have been widely reported. However, prior-art adhesive research often studies how material chemistry and surface geometry independently impact the adhesion behavior. There is a substantial knowledge gap regarding how chemical, geometric, and material properties interact to control underwater adhesion. Moreover, the performance and durability of the reported adhesives are severely limited under harsh environments. The SEAD project aims to develop novel adhesive strategies that tailor tunable and durable adhesives for target applications in seawater by integrating the knowledge from biomimetics, polymer chemistry and adhesion mechanics into a cooperative framework via theoretical calculation, advanced simulation and pathbreaking experiments. Unlike previous work, that often use mussel-inspired catechol-based compounds for underwater adhesion, this project will explore the potential of plant-inspired pyrogallol-based compounds as adhesion anchoring sites. This is expected to hinder the adverse oxidation of hydroxyl groups in catechol, and thereby improve the performance and durability of adhesives in seawater. The research will accelerate the fundamentals of seawater adhesion to transform the developed adhesives for different substrates in harsh environments. The gained knowledge on tunable and durable seawater adhesion will stimulate the advancement of subsea structure design and provide new paradigms in adhesive applications, facilitating the development of a sustainable ocean economy.