Tilbake til søkeresultatene

FRIPROSJEKT-FRIPROSJEKT

LIPS: The Lifetimes of Ionospheric Plasma Structures

Alternativ tittel: Plasmastrukturers levetid i ionosfæren

Tildelt: kr 3,8 mill.

Dette prosjektet, kalt LIPS på kort, satte ut for å forstå den turbulente oppstykkingen av plasma strukturer i jordas øvre atmosfære. Dette abstrakte målet skulle gi en bedre, mer holistisk, forståelse av elektrostatisk turbulens i disse lagene av plasma. For hva nytte er det vel å forstå framveksten av turbulens uten kunnskap om hvordan den turbulensen forsvinner? Å forstå denne turbulensen er på samme tid å forstå mer om hvordan energi beveger seg, i bølger så og si, fra sola og inn i jordas nære rom, hvor den lager nordlys og annen elektrisk aktivitet. En dypere forståelse av selve plasmaturbulensen vil gjøre menneskeheten lettere istand til å beskytte teknologiske verdier i rommet, samt bedre forutse forstyrrelser i GPS-navigasjon. Blant resultatene som prosjektet fuktbart ga var å bevise at plasmastrukturer rundt jordas ekvator (den mest turbulente delen av jordas nære rom) ødelegger seg selv gjennom en 'turbulent kaskade', med den virkning at plasmastrukturenes aspekter i ulike grader av forstørrelse ånder ut likt og samtidig, og dette er i klar motsetning til en kollisjonsforståelse av plasmaen. Med andre ord, en ordinær forståelse av hvordan magnetiserte plasmastrukturer skal forsvinne i rommet stemmer ikke overens med det teoretiske grunnlaget, en stor oppdagelse i et lite felt av fysikken. Dette bygger på en bredere forståelse av slik turbulent oppsmuldring av energi i jordas nære rom. Dette ikke-lineære aspektet ved romfysikken, som ikke kan behandles av de ordinære lineære modellene som vanligvis bygger vår forståelse av de store bevegelsene som energi tar i rommet, nemlig interaksjonen mellom jordas magnetosfære og solas store magnetfelt, er svært viktig. Ved å bringe lys på det ikke-lineære aspektet av plasmafysikken har LIPS levert bidrag til vitenskapens fremgang.

The outcomes of my work during the project are divided into two themes, of which the original goal are an integral part of the the first category: 1. Turbulent Energy Dissipation The prevailing theories regarding plasma structure decay were largely based on ambipolar diffusion, with limited support from space observations. By using large datasets of in-situ plasma observations from the ionosphere, my research has altered our understanding of this process: a) While a single prior study hinted at the possibility, I provided the first definite evidence that low-latitude F-region irregularities tend to decay scale-independenty (DOI 10.1029/2024GL109441). This conclusion stands in stark contrast to previous expectations based on ambipolar diffusion. b) My work on the cusp region demonstrated that the particle energy flux from the solar wind decreases when the turbulent dissipation of irregularities maximizes (DOI 10.1029/2023JA031849). This altogether surprising result indicates that the growth of plasma turbulence in the cusp may be mostly influenced by factors other than soft electrons from the solar wind. c) I continued the investigation into the E-region's effect on F-region plasma irregularities, finding that the intense, diffuse aurorae that occur at night in the polar regions are simultaneously a source of local irregularity production and a sink of unstable plasma energy. (DOI 10.3389/fspas.2024.1309136). 2. Novel Methods for Characterizing Auroral Electric Fields Using Coherent Scatter Radar After moving to Canada I have been working with the Canadian 3D radar ICEBEAR, leading to discoveries in the field of radar-based remote sensing of the ionosphere: a) Using data analysis techniques borrowed from observational cosmology, I demonstrated that plasma irregularities in the E-region tend to exhibit a preferred scale of organization (DOI 10.1029/2022JA031233), and that this preferred scale is also observed in field-aligned current filamentation (DOI 10.1029/2023JA032310). This finding provides insights into the critical link between the lower ionosphere and the magnetosphere. b) Based on unsupervised machine learning, I developed a new point-cloud clustering and tracking algorithm for radar interferometry, breaking with long-held radar conventions (DOI 10.1103/PhysRevE.110.045207). The importance of this innovation is reflected in the attention it received from the American Physical Society, through being highlighted with an attendant popular-scientific article. c) I developed a novel method that allows, for the first time in decades, the unambiguous determination of electric fields using E-region coherent radars (DOI 10.1029/2024JA033060). This breakthrough overcomes a long-standing challenge in E-region remote sensing and opens up exciting new possibilities for monitoring space weather. The paper was highlighted by the American Geophysical Union, and the metadata service Altmetric placed the paper in the top 5% research outputs globally.

LIPS intends to shed light on plasma structure decay in the upper ionosphere, in both the polar and equatorial regions, by performing direct measurements of structure lifetimes, using a novel set of multi-point plasma measurements. In the ionosphere, plasma structure lifetimes are a result of chemical recombination and plasma diffusion. Whereas the growth of plasma irregularities have been paid considerable attention, their decay have largely not been studied, and plasma structure lifetime has consequently been paid little attention in the scientific literature. However, the topic is important, as every technological problem associated with plasma irregularities (radio scintillations, e.g.) are directly impacted by the lifetimes of those irregularities. LIPS identifies three main challenges in the field of F-region plasma structure lifetime. First, the measured scale-dependency in high-latitude plasma structure lifetime deviates strongly from the theoretical predictions. Second, measurements of equatorial F-region plasma structure lifetimes yield results that are completely scale-independent, suggesting that the mechanisms are not fully understood. Third, small-scale plasma structures result from instabilities, meaning the growth of turbulence can badly offset structure lifetime calculations. LIPS will resolve these issues by use of completely new multi-point plasma measurements performed by the Korean SNIPE satellite mission, which will be launched in 2021. A constellation of four satellites will orbit in tightly controlled formations. Whereas researchers performing power spectral density analyses on conventional satellite data have to contend with treating 3D plasma structure projections to 1 dimension, LIPS will be able to approach plasma structures without this simplification. The methodology we propose has real potential as a tool to scrutinize scale-dependent physical phenomena in ionospheric plasma, paving the way for future scale-dependent investigations.

Publikasjoner hentet fra Cristin

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Budsjettformål:

FRIPROSJEKT-FRIPROSJEKT

Finansieringskilder