Tilbake til søkeresultatene

MAROFF-2-Maritim virksomhet og offsh-2

Real-Time Hybrid Model Testing for Extreme Marine Environments

Alternativ tittel: Real-Time Hybrid Model Testing for Extreme Marine Environments

Tildelt: kr 16,0 mill.

Prosjektets mål er å utvikle en "hybrid" modellforsøk metodikk (Real-Time Hybrid Model testing) for å studere marine konstruksjoner og marine systemer under ekstreme forhold. I et hybrid-forsøk er en del av systemet representert ved en fysisk modell som testes i et laboratorium, mens den andre delen av systemet er virtuelt, dvs simulert på en datamaskin. De to delene kommuniserer og inter-agerer i sanntid gjennom et nettverk av sensorer og aktuatorer. De siste to måneder i prosjektet ble brukt til rapportering av de siste aktivitetene og til oppsummering av de hovedfunn i "best practice guidlines". Prosjektet har gjort det mulig for oss å lære nye kompetanser og har hjulpet oss å utvikle nye kommersielle produkter. Gjennom prosjektet har vi også blitt kjent med en hel ny verden av muligheter som vi skal fortsette å forske på gjennom nye forsknings prosjekter.

The fundaments of hybrid testing for marine technology have been defined in the project based on the work done in other fields (e.g. seismic engineering) and on strong international collaborations. Hybrid testing is now an active research topic for SINTEF Ocean and NTNU. The knowledge gained in the project and the new collaborations have introduced us to new research fields and methods which will be actively researched and applied in the near future. New products were developed in the project to allow for testing of oil and gas platforms, fish farms, offshore wind turbines, and machinery systems with a higher degree of fidelity then what was possible before. This will lead to better and safer designs in the industry. Our newly acquired knowledge about hybrid testing makes it now possible to use hybrid testing as a cornerstone of the new Ocean Space Centre, for testing of complex systems without the need for gigantic infrastructures (cost-reducing measures).

Real-Time Hybrid Model Testing (or simply "hybrid testing") is the science of combining advanced simulations, state-of-the-art experimental methods with active control system into a novel approach, to verify the safety and efficiency of marine structures and operations. In hybrid testing, one part of the system is studied physically, while another part is represented by a numerical model. Both parts interact in real-time through actuators and sensors. Within this project, the following practical issues will be addressed: - Development and operations of oil fields in ultra-deep water, whose verification would require an ocean basin with much larger water depth and heavy equipment for environmental control than available in present large-scale laboratory infrastructures. - Similar issue faced by the aquaculture industry when considering operating larger fish farms in deeper and more exposed locations. - Experimental issues (Reynolds and Froude scaling incompatibility) when validating offshore wind turbines concepts in an ocean basin - Optimization of the performance, fuel consumption, and emissions of machinery under DP operations in realistic conditions, also including e.g. propeller ventilation. Such a technology will contribute to the strategic need for the Norwegian industry for safer, cleaner and more cost-effective operations in challenging environments. It will push forward the research front in the fields of marine hydrodynamics, machinery and control systems, and open for new innovation areas for existing and emerging industries. Similar approaches have been used in e.g. earthquake engineering and automotive industry, and are still the focus of the academia in Europe, USA, and Asia. The technology transfer of existing methods to marine technology is not straightforward due to the different nature of the phenomena of interest. This has especially consequences on filtering and control methods, and efficiency of existing numerical tools.

Publikasjoner hentet fra Cristin

Budsjettformål:

MAROFF-2-Maritim virksomhet og offsh-2