Tilbake til søkeresultatene

PETROMAKS2-Stort program petroleum

Towards Artificial Intelligent Maintenance System (AIMS) via Predictive Failure Modelling and Numerical simulation

Alternativ tittel: Et intelligent vedlikeholdsstyringssytem for belegg basert på prediktiv modellering og numerisk simulering

Tildelt: kr 4,8 mill.

Korrosjonsbeskyttende maling er helt avgjørende for sikkerhet og levetid for marine konstruksjoner, og dermed også vedlikehold av belegget gjennom konstruksjonens levetid. Vedlikehold av malte overflater i felt er både kostbart og utfordrende med hensyn på sikkerhet til utførende personell. Intelligente systemer for beslutningsstøtte kan hjelpe til med å optimalisere vedlikeholdet. Den økende bruken av sensorer og dronefotografering i tilstandskontroll av maling gjør at vi nå kan utvikle beslutningsstøtteverktøy for prioritering av vedlikehold. Hvis vi basert på en nå-tilstand fra sensor- og bildedata og modellering av videre korrosjon og nedbrytning av belegget, vil vi også kunne predikere fremtidig behov for vedlikehold. Utvikling av sensorer, modeller, programvare og maskinlæring med dette formålet er hensikten med dette prosjektet. Følgende resultater er oppnådd så langt: - Moderne malingsbelegg gir god korrosjonsbeskyttelse så lenge de er påført riktig. Korrosjon på malt stål oppstår hovedsakelig på kanter og sveiser som følge av for lav filmtykkelse. Akselerert testing i lab er ikke i stand til å si noe om beleggets levetid i felt. - En akustiske sensorer for måling av skader i belegg under vann er under utvikling. En lab-versjon basert på Rayleigh bølger er testet i lab og måleprinsippet er dokumentert. - Degradering av belegg over vann inspiseres enkelt manuelt eller ved hjelp av droner, og dokumenteres med fotografering. Et nevralt nettverk er trent opp til å gjenkjenne korrosjon på bilder. - En modeller for prediksjon av korrosjonshastighet og fremtidig nedbrytning av belegg er under utvikling, basert på feltdata fra installasjoner og sensorer som måler korrosjon og miljøparametere.

Safety of marine constructions is fundamentally dependent on corrosion control by protective coatings and their maintenance. Coating maintenance is expensive and has safety challenges. To determine the optimal time to perform coating maintenance is difficult since several issues must be considered at the same time, like economy, logistics, safety without compromising the integrity of the construction or the safety workers. Intelligent decision support systems (DSS) will aid the maintenance optimization. The introduction of sensor- and drone photo monitoring enables intelligent predictive maintenance systems and decision support systems also for coatings. This process can become even more effective if predictive simulations can forecast coating degradation and corrosion induced damage. Sensors and automatic inspections are now being introduced and deliver (computationally) useful information. Key to the success of this revolution is that information can be extracted from the data. Developing sensors, computational models, software tools and AI for this purpose is the technical objective of this project. The project consists of four main technical developments: · Laboratory investigation of correlation between environmental parameters and coating degradation to fill the holes in our current understanding · Development of acoustic sensors for monitoring coating degradation. Inspection of atmospheric coatings is achieved by photo, aided by drones, which is known technology · Development of a neural network (AI) for analysing sensor data, picture data and simulation data on coating degradation · Development of a model to predict the coating degradation rate and corrosion from the current state, and future need for coating maintenance TAIFUN will start at TRL4 with the goal to achieve TRL6 where the modelling approach will be tested, calibrated, verified and validated on damage scenarios defined by industrial partners. Duration of the project is 3 years.

Publikasjoner hentet fra Cristin

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Ingen publikasjoner funnet

Aktivitet:

PETROMAKS2-Stort program petroleum